The INTERTWIinE project and in-situ
data analytics

http://www.intertwine-project.eu

N|ck Brown, EPCC — n.brown@epcc.ed.ac.uk

; This project is funded from the European Union’s Horizon 2020 Research and Innovation programme
L Under Grant Agreement no. 671602.

INTERTWIinE

Interoperability between programming models
for scalable performance on extreme-scale supercomputers

. Linear Algebra Space Plasma
* Computational Resource Management
e Coordinated resource sharing for interoperability Big Data analytics Complex Fluids

between runtime systems, libraries

Q)
* Distributed Data Management StarPU MPI C
e Scalable, transparent data sharing on
heterogeneous, distributed memory hierarchies ®)
GASPI/GPI
* Engagement with HPC community

e Standards bodies: OpenMP, MPI, GASPI O
* Courses, workshops and Best Practice Guides

u Follow INTERTWinE on Twitter: @intertwine_eu

http://www.intertwine-project.eu

Interoperable node-level resource sharing

Sequential li R
. . application inear algebra Intel MKL
Computational Resource Sharing on OpenMP CPUMSAGE
* Multiple codes compete for CPU
cores, accelerator devices on ‘ dgemm() .

AR
AR
AW
A

cluster nodes

* Application threads

* Numerical libraries threads

* Runtime systems threads

* Communication library threads

(YWARALAANNG LGN

(WARAAA
C WARRA
(Y LA
(WARRAL

o |C WAL,

* Interference leads to resource over-subscription or under-subscription on

cluster nodes
* Interoperability?

* Need coordinated resource sharing:
* Ability to express general resource needs
* Ability to express dynamic resource requirements:
e computational-heavy periods, idleness periods

http://www.intertwine-project.eu

Interoperable node-level resource sharing

Computational Resource Sharing

* Multiple codes compete for CPU
cores, accelerator devices on
cluster nodes

* Application threads

* Numerical libraries threads

* Runtime systems threads

* Communication library threads

7

A

PLASMA
Parallel linear
application algebra Intel MKL

OmpSs COfELL) CPURJSAGE
<, S € 2
% gpesmml) dpotrf() ? : > o
> %‘__, - W R
< > ¢ e B > == ~ <
< N \\‘2‘2 » SEE A i = <
y P A : > T &S O &= <

< << SN = & S <

X 2 \Q., \5‘ < >
2 \&ﬂ; &S = < & e -
> \‘9&, & e o < o S
< Ve e © € = g
~ - . .

WA YACACACTAS

* Interference leads to resource over-subscription or under-subscription on

cluster nodes
* Interoperability?

* Need coordinated resource sharing:
* Ability to express general resource needs
* Ability to express dynamic resource requirements:
e computational-heavy periods, idleness periods

http://www.intertwine-project.eu

INTERTWInE — Resource Manager APIs

Dynamic Resource Sharing

Enable runtime systems to dynamically negotiate and adjust resource usage

PLASMA Resource
Parallel linear manager
application algebra R
OmpSs on 59 %
OpenMP

lend) lendd)

> €

\& dgemm() borrow()
= ::ﬁ enable

___dpotrf() § >
“disable M@{
:§ ¢ borrowQ -

po

o

Iend() enableﬂ:*“’!‘z

AR

BRARIKAASK
ACIARSYARSARRAR

A
y

AW 4

http://www.intertwine-project.eu

MPI and tasks deadlock issue

A

 —

N
A
N

A
w

Py
N N s

w

A
o1

(@))

\l
A

00)

slajolzfzfe)afel
Gl B

©

MPI and tasks deadlock issue

Interoperability MPI for task-based communications

 Using the resource manager
we have extended the MPI
library

* The resource manager will
pause threads/tasks that
issue blocking
communication call (lend)

* MPI library polls
outstanding requests and
uses the resource manager
to rewake threads when
communications complete
(reclaim)

Gauss-Seidel Strong Scaling with MPI+OmpSs

16 | | | |
8 I
4 L o
g OmpSs fork-join —@—
g 2= OmpSs tasks —0—
7] OmpSs tasks+interop —&—
0.25 | | | |
1 2 4 8 16 32
Nodes
Strong scaling in 2 dimensions,
global size is 64k by 64k.

100 iterations and 48 cores per node
(MareNostrum4.)

http://www.intertwine-project.eu

Task multiple parallelism: 4 nodes (48 cores per node)

* Interoperability MPI,
built upon the
resource manager
significantly cuts
down the amount of
synchronisation
required

* Lots more threads
can be active

OmpSs
tasks +

Green arrow (<RI,
_ i | | represents
Interop ‘ » A 10 iterations

http://www.intertwine-project.eu

Implicit task and distributed memory interoperability

* Schedules lots of

for (i=0; i<x; i++) | tasks, which will not
for (4=0; 3<ys i+4) | run until their input
#pragma omp task in(A[i,3j], B[i,j]) out(A[j,il, BI[j,1i]) d6pendencies dare
my task(Ali,jl, Bli,3j], Alj,il, B[j,i]) met.
b * Each produces outputs

that other tasks may
depend upon
* Task-based models tend to be limited to a single memory space

A significant limitation and hence we want to extend this to
distributed memory machines

* For instance, the array A might be distributed amongst the nodes
¢ RT M//

* When the task starts, the data it needs is available s >
(irrespective of where that is located.) When the task B @%@

completes the resulting data is available to any other task.

http://www.intertwine-project.eu

Directory/cache: For distributed shared memory

0xFF0000 —
_________________________________ Node2 |
_________________________________ Node1 I —ArrayA
Programmer’s Node O
view of —
memory Node 2)
o Nodei — Array B
Node O
0x000000 —
"""""""""""""""""" Array B Array B Physical
________ Alfay A || |5 view of
Array A memory
-------------------------------- e Lin,
Array B
Node O Node 1

http://www.intertwine-project.eu

Directory/cache integration and transport layers

* It is intended to be integrated into the runtimes of task based
models (but can be used directly)

* Such as OmpSs, StarPU, PaRSEC, GPI-Space
* So its use (and existence!) is transparent to the programmer

PaRSEC GPI-Space

OmpSs Runtime StarPU Runtime Runtime Runtime

Directory/Cache (Virtual Memory Manager)

GASPI MPI BeeGFS
Segment Segment Segment

* Transport layers are provided that implement the underlying
data movement

* GASPI, MPI RMA, BeeGFS xR

* Very easy to switch in and out \

http://www.intertwine-project.eu

Early performance measures

Runtime (seconds)
BN N
i ©

=
o

* Block Cholesky matrix factorisation
* 16384 * 16384 elements, block size of 16 * 16

* BLAS for computation, concentrating here on the
cost of data movement

* On ARCHER, Cray XC30

m MPI Fences
m MPI Locks
m Directory Cache

128 256 512
Number of processes

http://www.intertwine-project.eu

Linear Algebra Space Plasma
Big Data analytics Complex Fluids

)

StarPU

O

GASPI/GPI

Big data analytics for atmospheric modelling

* Separately we have worked with the Met
! 0 | i Office on a large scale atmospheric code

* The previous code was capable of
maximum 20 million grid points over
256 cores

* We routinely run our model (MONC)
on 2.1 billion grid points, 32768 cores

0.008 oy

5 St A -
S o =g
0 - Lt
55 §ooocg
=X

| : :

500 50 A 00 O 0 D 400 O - G 0
o : Soeest S ooagecnd : SocoaBonoct Sooofosend Soonctenad
-1000 1000 000 000 4000 0o =i . r

Prognostics Diagnostics
-

pout (S1)

Analysing the data in-situ

* Have many computational processes and a number of data analytics
cores

* Typically one core per processor is dedicated to |0, serving the other
cores running the computational model
* Computational cores “fire and forget” their data

* In-situ as raw data is never written out .

« Would be too time consuming N

-

 Avoids blocking the computational
cores for analytics and 10

* Dynamic time-stepping, checkpoint-restart of analytics, m
bit reproducibility, easy configuration | ‘

Our analytics pipeline

External Raw MONC data
AP \
Raw
MONC \{ Diagnostics Writer

- - =
federator Diagnostic data federator

| |

Inter_lot_ NetCDF file| [writer state
Operators| | communications writer | serialiser

Time
manipulation
|
/ \ NetCDF

Instantaneous Time outputfile

averaged L

Under the hood: Event handling

* The federators and their sub activities are event handlers
* Process events concurrently by assigning these to these from a pool
* Aids asynchronous data handling
* As soon as data arrives process it
* Internal state of event handlers needs protection (mutexes/rw

locks)
* Challenge: cvent Request
* Bit reproducibility f,ﬂ‘,ﬁggo, | Thread
* For some handlers enforce a pool
predictable order of Process | |Process —
processing events (based on event || event
model timestep.)
* Queue up out of order events m

Inter-l0 communications challenge

External Raw MONC data

* We promote asynchronicity and i \
processing of events out of order \ Diagrostics| [Writer
where possible / /

o o . com:;]lt;ricl:(ajtions Net‘jv:r[iieFrﬂle V\;reit;;”s;::e

* Many inter IO communications e

manipulation
involve (zollectlve operations (such as . '\ _|o§?$‘335e |
a reduction) i

* We would like to use MPI, but issue order of collectives matters
(i.e. if IO server 1 issues a reduce on field A and then B, then all
other 10 servers must issue reductions in that same order)

* But ensuring this would require additional overhead and/or

coordination
‘] |]

* Solution: Abstract through active messaging

Active messaging for inter-I0 communications

* These communication calls additionally provide
* UniquelD: matching collectives even if they are issued out of order

* Callback : Handling procedure called on the root when the data
arrives

* inter_io_reduce(data, data_type, action, root, uniqueld,
callback)

* When this reduction is completed on the root, a thread is activated

from the pool and calls the handling function (typically in the event
handler)

call inter io reduce(data, type, 0, “sum”, fieldname//” ”//timestep, handler)

subroutine handler (data, data type, uniqueld)

end subroutine handler

Performance and scalability

Computation only I
Computation and diagnostics E===1

350 I I I I

300

250

200

150

Runtime (seconds)

100

50

512 2048 8192 32768

Number of computational cores

» Standard MONC stratus cloud test case
* Weak scaling on Cray XC30, 65536 local grid points

» 232 diagnostic values every timestep, time averaged
over 10 model seconds. File written every 100 model ['1 '
seconds. Run terminates after 2000 model seconds.

What’s the link to INTERTWinE?

» This is (distributed) task-based parallelism Analytics Pipeline

* Active messaging addresses the interoperability - hand|
challenge between tasks (threads from the pool) and vent handalers

MPI communications Active messaging
* Our analytics pipeline is currently built on-top of our MPI pthreads

own lower layer which provides active messaging via

MPI P2P

* Instead, can we keep our abstraction
of the analytics pipeline but build this

Analytics Pipeline upon existing task-based models

(OmpSs, OpenMP etc)

Task based model * Build upon the resource manager and

directory/cache of INTERTWinE RTY
Resource Diretory * |deally exte.nd the notion of task 2 a2
manager cache dependencies

* The work of INTERTWInE is key here

http://www.intertwine-project.eu

Summary and collaboration opportunities

* Best Practice Guides:

* Writing GASPI-MPI Interoperable Programs
* MPI + OpenMP Programming

* MPI + OmpSs Interoperable Programs

* Open MP/OmpSs/StarPU + Multi-threaded Libraries Interoperable Programs

* “Developer Hub” of resources for developers & application users

* We are very happy to make available our directory/cache and
resource manager implementations

* In-situ data analytics:

* Keen to explore generalising these ideas to wide
variety of parallel codes generating lots of data ! o l i

http://www.intertwine-project.eu

