PACS-X New Frontier of Accelerated HPC

Taisuke Boku Deputy Director / HPC Division Leader Center for Computational Sciences University of Tsukuba

2017/12/07 CCS-EPCC-WS2017@Tsukuba

Center for Computational Sciences, Univ. of Tsukuba

Outline

- FPGA for HPC as large scale parallel system
- AiS (Accelerator in Switch) concept
- FPGA for high performance interconnection and computation
- PACS-X Project and PPX
- OpenCL-enabled computation/communication on FPGA
- Application Example: Astrophysics
- Summary

Accelerators in HPC

- Traditionally...
 - Cell Broadband Engine, ClearSpeed, GRAPE....
 - then GPU (most popular) and MATRIX-2000 ③
- Is GPU perfect ?
 - good for many applications (replacing vector machines)
 - depending on very wide and regular computation
 - Iarge scale SIMD (STMD) mechanism in a chip
 - high bandwidth memory (GDR5, HBM) and local memory
 - bad for
 - not enough parallelism
 - not regular computation (warp spliting)
 - frequent inter-node communication (kernel switch, go back to CPU)

FPGA in **HPC**

- Goodness of recent FPGA for HPC
 - True codesigning with applications (essential)
 - Programmability improvement: OpenCL, other high level languages
 - High performance interconnect: 40Gb~100Gb
 - Precision control is possible
 - Relatively low power
- Problems
 - Programmability: OpenCL is not enough, not efficient
 - Low standard FLOPS: still cannot catch up to GPU
 - -> "never try what GPU works well on"
 - Memory bandwidth: 2-gen older than high end CPU/GPU
 - -> be improved by HBM (Stratix10)

Simple pros/cons

	performance (FLOPS)			
CPU	Δ	0	Ô	
GPU	Ø	Δ	0	
FPGA	0	Ø	×→∆?	

How to compensate with each other toward large degree of strong scaling?

CCS-EPCC-WS2017@Tsukuba 2017/12/07

AiS

AiS: Accelerator in Swtich

- Using FPGA not only for computation offloading but also for communication
- Combining computation offloading and communication among FPGAs for ultralow latency on FPGA computing
- Especially effective on communicationrelated small/medium computation (such as collective communication)
- Covering GPU non-suited computation by FPGA
- OpenCL-enable programming for application users

AiS computation model

invoke GPU/FPGA kernsls

CCS-EPCC-WS2017@Tsukuba 2017/12/07

How fast on communication ? (FPGA-FPGA link)

- Xilinx XC7VX1140T(Virtex7) with 100Gbps optical interconnect
- up to 96% of theoretical peak
- good scalability up to 3 channels aggregation
- Intel Stratix10 will have up to 4 channels of 100Gbps link

CCS-EPCC-WS2017@Tsukuba 2017/12/07

PACS-X (ten) Project at CCS, U. Tsukuba

PACS (Parallel Advanced system for Computational Sciences)

- a series of co-design base parallel system development both on system and application at U. Tsukuba (1978~)
- recent systems focus on accelerators
 - PACS-VIII: HA-PACS (GPU cluster, Fermi+Kepler, PEACH2, 1.1PFLOPS)
 - PACS-IX: COMA (MIC cluster, KNC, 1PFLOPS)
- Next generation of TCA implementation
 - PEACH2 with PCIe is old and with several limitation
 - new generation of GPU and FPGA with high speed interconnection
 - more tightly co-designing with applications
 - system deployment starts from 2018 (?)

PPX: testbed under AiS concept (x6~12 nodes)

PPX (Pre-PACS-X) mini-cluster system

2017/12/07

Center for Computational Sciences, Univ. of Tsukuba

OpenCL-enabled high speed network

- OpenCL environment is available
 - ex) Intel FPGA SDK for OpenCL
 - basic computation can be written in OpenCL without Verilog HDL
- But, current FPGA board is not ready for OpenCL on interconnect access
 - **BSP (Board Supporting Package)** is not complete for interconnect
 - \rightarrow we developed for OpenCL access
- Our goal
 - enabling OpenCL description by users including inter-FPGA communication
 - providing basic set of HPC applications such as collective communication, basic linear library
 - providing 40G~100G Ethernet access with external switches for large scale systems

BSP (Board Support Package)

- description specifying FPGA chip and board peripherals configuration and access/control method
 - independent for each board with FPGA
 - a sort of virtualization to enable same kernel development on FPGA
- minimum interface is provided by board vendors
 - we need optical interconnection access method in BSP

13

Our test bed (BittWare A10PL4 with Intel Arria10 FPGA)

14

Center for Computational Sciences, Univ. of Tsukuba

Ethernet IP Controller

OpenCL code example for pingpong

Center for Computational Sciences, Univ. of Tsukuba

16

Evaluation test-bed

17

CCS-EPCC-WS2017@Tsukuba 2017/12/07

Center for Computational Sciences, Univ. of Tsukuba

Communication paths

CCS-EPCC-WS2017@Tsukuba 2017/12/07

Communication latency

Communication bandwidth

- 40Gbps Ethernet achieves 4.97GB/s
 - 99.8 % of theoretical peak (w/o error handling)
 - small $N_{1/2}$ by short latency
- via-IB achieves 2.32GB/s
 - non-pipelined
 - no special feature (such as GPUDirect) on FPGA-HCA

AiS application example: ARGOT

- ARGOT (Accelerated Radiative transfer on grids using Oct-Tree)
 - Radiative transfer simulation code developed in CCS
 - Two basic computing methods for radiation transfer
 - ARGOT method
 - from a light source
 - ART
 - from spatially spread light sources
- CPU version and GPU version with MPI
- ART method occupies >90% of computation even on GPU, and we need more speedup
 - → making FPGA offloading in AiS concept

ART method

- radiative transfer computing on spatially spread light sources
- ray-tracing on 3-D space with grid decomposed partitions
 - rays are in parallel
 - different input angles
 - no reflection nor refraction (different from 3-D graphics ray-tracing)
 - HEALPix algorithm for ray generation
- Iarge scale for parallel processing
 - mesh size: 100³~1000³
 - ray angles: 768~1000s

Performance (single FPGA) on ART method

Device	Perf. [M mesh/sec]	vs CPU
CPU	117.49	-
FPGA@228.57MHz (w/o autorun)	593.11	5.05
FPGA@236.11MHz (w/ autorun)	1714.97	14.60

- up to 14.6x faster than CPU, and 5.1x faster than GPU
- 93% of computation time of ARGOT is dominated by ART method
 - \rightarrow 7.48x speedup on entire code is expected

Circuit resource utilization

	ALMs	Registers	M20K	MLAB	MLAB size	DSP	Freq.	
w/o	228,610	473,747	1,839	4,330	47,968	536	228.57	
autorun	(54%)	(55%)	(68%)		bits	(35%)	MHz	
w/	228,835	467,225	1,716	7,350	138,288	536	236.11	
autorun	(54%)	(55%)	(63%)		bits	(35%)	MHz	
difference	+225	-6,255	-123	+3,020	+90,320	0	+7.54	

- largest resource use is on M20K (63%)
 - actually 53.3% (without BSP use)
- DSP utilization is only 53%
- We can achieve up to 2x more speed

Next Step

Precision controlling

- for ART and ARGOT, SP is too much, HP is not balanced
- finding best (e, m, s) combination
 e=exponent m=mantissa s=(exponent digit shift)
- Combining Communication and Computation
 - OpenCL computing kernels binding with OpenCL Ethernet communication layer kernels with OpenCL Channel (by Intel SDK)
 - Possibility on network from Ethernet-switch to Direct Link between FPGA (with Stratix10 or similar in Xilinx)

Combining GPU and FPGA

- GPU global memory access via PCIe from FPGA
 → technology porting from TCA/PEACH2 in HA-PACS project
- GPU/FPGA offloading control from CPU
 - → new programming paradigm is required

High Level Programming Paradigm

XcalableACC

- under development in collaboration between CCS-Tsukuba and RIKEN-AICS
- PGAS language XcalableMP is enabled to imply OpenACC for sophisticated coding of distributed memory parallelization with accelerator
- inter-node communication among FPGA can be implemented by FPGA-Ethernet direct link
- Data movement between GPU and FPGA
- OpenACC for FPGA
 - (plan) research collaboration with ORNL FTG
 - OpenACC -> OpenCL -> FPGA compilation by OpenARC project is under development
 - final goal: XcalableACC with OpenARC compiler and FPGA-Ethernet link
 - OpenMP->OpenCL->FPGA for XcalableMP implementation)

Summary

- FPGA for HPC is very attractive theme for next generation of accelerated platform
- FPGA is usable not only for computing but also for communication
- 360-degree system to cover highly parallel STMD computing by GPU and flexible processing on FPGA with communication feature
- OpenCL-enabled programming including communication for application users
- CCS, U. Tsukuba is moving forward to realize AiS concept on next generation multi-hetero supercomputing toward PACS-X implementation

