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FIG. 9. (Top panels) Half-lives for nuclei in the Ce (Z = 58, left)
and Nd (Z = 60, right) isotopic chains, calculated with the Skyrme
EDFs described in the text. Symbols correspond to the same EDFs as
in Fig. 6. (Bottom panels) Calculated half-lives of Ref. [17] (×), [33]
(+), and [83] (⋆), measured half-lives [82] (circles), and the range of
half-lives reported in this paper (shaded region).

strongly affect r-process abundances near A = 160. (Neutron-
odd nuclei do not significantly affect the r process because
they quickly capture neutrons to form even-N isotopes [1].)
Figures 9 and 10 present new calculated half-lives in four
isotopic chains, with even-Z isotopes in Fig. 9 and odd-Z
isotopes in Fig. 10. The top panels of these figures include
predictions with all five adjusted Skyrme EDFs, and the
bottom panels compare our calculations to measured values
[82] and the results of previous QRPA calculations [17,33,83]
where they are available. Our calculations span the (narrow)
range of predicted half-lives in these isotopic chains, with
SLy5 and UNEDF1-HFB predicting the shortest half-lives for
the most neutron-rich isotopes, as one could expect from
the analysis of Sec. III B 1. While the UNEDF1-HFB half-lives
are uniformly short, however, those of SLy5 actually are
the longest predictions (and the closest to measured values)
for nuclei nearer to stability. The variability of our half-life
predictions in Figs. 9 and 10 is typical of all 70 nuclei in the
calculation. The longest and shortest calculated half-lives for
any nucleus in our set differ by a factor ranging from about 1.9
to 3.3, and this interval does not depend strongly on whether
a nucleus has an even or odd number of protons.

The results of Refs. [17,33,83] are actually fairly similar to
ours, spanning roughly the full range of our predicted values in
Fig. 9. (Neither Ref. [33] nor [83] report half-lives for odd-Z
nuclei and so cannot be a part of Fig. 10.) The half-lives of
Ref. [33] are close to our own SkO′ half-lives, a result that
is unsurprising given that the EDF in that paper is a modified
version of SkO′ (and that we use the same pnFAM code). The
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FIG. 10. (Top panels) Half-lives for nuclei in the Cs (Z = 55, left)
and La (Z = 57, right) isotopic chains, calculated with the Skyrme
EDFs described in the text. Symbols correspond to the same EDFs as
in Figs. 6 and 9. (Bottom panels) Calculated half-lives from Ref. [17]
(×) superimposed upon the range of half-lives reported in this paper
(shaded region).

half-lives of Ref. [17] lie, for the most part, right in the middle
of our predictions and follow those of SV-min fairly closely
(the Q values are similar). Finally, Fang’s recent calculations
[83] yield relatively short half-lives, shorter than even those
of UNEDF1-HFB most of the time. Still, the band of predicted
half-lives is relatively narrow among these three calculations
even in the most neutron-rich nuclei. Reference [33] points out
that despite their differences, most global QRPA calculations
produce comparable half-lives. Our results in both A ≃ 80 and
A ≃ 160 nuclei support this observation.

Figures 9 and 10 (as well as Fig. 11, discussed momentarily)
show that the overall pattern of β decays in the A ≃ 160 region
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FIG. 11. Impact of first-forbidden β transitions in rare-earth
nuclei that are important for the r-process nuclei, with the Skyrme
EDF SV-min.
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Microscopic description of the nuclear β-decay
charge-exchange mode of excitation  
= superposition of 2qp excitations of a proton and a neutron
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w/ isospin-change

GT matrix element to low-lying states:  
key quantity to beta-decay rate
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2

∑

σ,σ′

∑

τ

⟨ψ(rστ t)ψ(rσ̄′τ̄ t)⟩⟨σ|σµσ |σ′⟩

ρ̃1,µτ (rt) =
1

2

∑

σ

∑

τ,τ ′

⟨ψ(rστ t)ψ(rσ̄τ̄ ′t)⟩⟨τ |τµτ |τ ′⟩

ψ(rσ̄τ̄) = (−2σ)(−2τ)ψ(r −σ −τ)

ρ̃ν(r) = ⟨ψν(r ↓)ψν(r ↑)⟩
ρ̃π(r) = ⟨ψπ(r ↓)ψπ(r ↑)⟩

ρν(r) =
∑

σ

⟨ψ†
ν(rσ)ψν(rσ)⟩

ρπ(r) =
∑

σ

⟨ψ†
π(rσ)ψπ(rσ)⟩

1

physical observables in spin-isospin response



Energy functional:

Energy density:

E =

∫
drH(r)
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∑
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Skyrme energy density:

E =

∫
drH(r)

H = Hkin+HSkyrme+Hem
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∑

t=0,1
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t3=−t

(
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tt3 +Hodd
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)
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tt3 = Cρ

t ρ
2
tt3 + C∆ρ
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HSkyrme =
∑
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)
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2
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T-odd Skyrme energy density

E =

∫
drH(r)

H = Hkin+HSkyrme+Hem

HSkyrme =
∑

t=0,1

t∑

t3=−t

(
Heven

tt3 +Hodd
tt3

)

Heven
tt3 = Cρ

t ρ
2
tt3 + C∆ρ

t ρtt3∆ρtt3 + Cτ
t ρtt3τtt3 + C∇J

t ρtt3 ∇ · Jtt3 + CJ
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tt3
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t stt3 ·∇×jtt3

Hodd
tt3

H
ρ0

= 24/3
(
3π2

2

)2/3 [ !2
2m

+
(
Cτ

0 + Cτ
1 + CT

0 + CT
1

)
ρ0

]
ρ2/30 +

(
Cρ

0 + Cρ
1 + Cs

0 + Cs
1

)
ρ0

vres(r1, r2) ≡
δ2E

δρ(r1)δρ(r2)
∫

drrLYLψ
†(rστ)⟨σ|σ|σ′⟩⟨τ |τ |τ ′⟩ψ(rσ′τ ′)

∫
drrLYLŝ1t

ŝ1t = ψ†(rστ)⟨σ|σ|σ′⟩⟨τ |τ t|τ ′⟩ψ(rσ′τ ′)
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Skyrme energy-density functional approach

vanishes for ground-state of even-even nuclei

Isovector (t=1) coupling constants

Poorly known (poorly constrained):

less information on nuclei with neutron (proton) excess

vector-isovector density

Gamow-Teller ME

coupling constants for



and produces a less collective GTR, providing a much
shorter half-life. The parameter sets SAMi, SGII [40],
SkM* [41], and SIII [42] overestimate the half-life, while
the interactions SLy5 and Skx [43] are in agreement with
the experiment at the RPA level.
The inclusion of PVC effects reduces the half-lives for all

interactions systematically. The reduction factor R is larger
for SAMi (R ≈ 42) and SGII (R ≈ 10) while it is equal to
about 4 for the other four interactions. Within RPAþ PVC,
the half-life obtained with the sets SkM* and SIII falls
within the experimental error. It has to be stressed that the

Skyrme force SkM* not only reproduces well β-decay
half-life but also the giant resonance line shape in 208Pb and
56Ni at the PVC level [34,35].
In order to understand the reasons for the systematic

decrease of the half-lives after the inclusion of phonon
coupling, we display in Fig. 2 the GT strength distributions
(with respect to the daughter nucleus), the cumulative sums
of the strengths, and the cumulative sums of 1=T1=2 [that is,
the values obtained from Eq. (4) when Qβ is replaced by a
running E in the upper limit of the integral in the
denominator]. Generally speaking, for all nuclei under
study, the GT peaks are shifted downwards when going
from RPA to RPAþ PVC. In 132Sn, two 1þ states
are observed experimentally below Qβ, at E ¼ 1.325 and
2.268 MeV. The latter has, however, a small decay
branching ratio (I ¼ 0.87%). The lowest RPA state lies
at E ¼ 3.6 MeV, above the Qβ window [Fig. 2(a)], so that
the nucleus is stable. In RPAþ PVC, the strength is about
the same but the lowest state is shifted within the Qβ

window so that we predict a finite value of the half-life.
While this is a qualitative improvement compared to RPA,
the observed lowest 1þ state is not reproduced and the half-
life is overestimated [Fig. 2(c)]. In the case of 68Ni, RPA
predicts a state within the β-decay window, but its energy
is higher than experiment [Fig. 2(d)] and the half-life is
overestimated [the contribution of this state to 1=T1=2 is
very small and is multiplied by a factor 10 in Fig. 2(f)].

FIG. 1 (color online). β-decay half-life of 78Ni, calculated by
RPA and RPAþ PVC approaches with several different Skyrme
interactions, in comparison with the experimental value [44].

FIG. 2 (color online). Experimental data related to β decay from nuclei 132Sn, 68Ni, 34Si, and 78Ni are compared with theoretical results
obtained with the SkM* interaction. In these panels, the excitation energies EM calculated with respect to the mother nucleus are
transformed to E, the excitation energies referred to the ground state of daughter nucleus, using experimental binding energy difference
(see the text); accordingly, the vertical dotted lines show the experimental value of Qβ [45]. Top panels: GT− low-lying strength
associated with the discrete RPA peaks BðGT−Þ (dashed lines) and with the continuous RPAþ PVC strength distributions SðGT−Þ
(solid lines). The arrows indicate the experimental energies of the measured 1þ states [45]. Middle panels: cumulative sum of the RPA
and RPAþ PVC strength shown in the top panels. Bottom panels: cumulative sum of 1=T1=2. The experimental values of 1=T1=2 [45]
for each nucleus are indicated by the stars. The strength of the lowest RPA and RPAþ PVC peaks in panel (g) and the RPA 1=T1=2 in
panel (f) have been multiplied by a factor of 100 and 10, respectively.
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distributions belowQβ, canceling the effect of about 2 MeV
increase in Qβ [see Figs. 4(c), 4(d)]. Since the ground-state
(GS) deformation changes very little along this sequence of
isotopes, we can understand these strength-function
changes from level spins and GT selection rules. The level
schemes here are calculated in the folded-Yukawa model
with ground-state deformations [32]. Each level is doubly
degenerate. The 31st proton, 49th and 50th neutron levels
have the spins of 5=2−, 5=2−, and 1=2−, respectively. For
157Nd97 and 158Nd98, the neutron in level 49 can decay to
the (GS) proton level 31 (5=2− → 5=2−) in the daughter.
But the single neutron in level 50 (1=2−) cannot decay to
the GS proton level 31 (5=2−) for 159Nd99, because the spin
difference is 2. Therefore, a (paired) neutron in level 49
decays instead, which leaves 3 unpaired particles in the
daughter: one in proton level 31, one in each of neutron
levels 49 and 50. Two more unpaired particles than in the
GS of 159Pm98 leaves it in an about two-MeVexcited state.
The situation in nuclei near N ¼ 105 is similar. Although
different spins are involved, the selection rules lead to
analogous effects. These effects, which are clear in the data
and predicted by the QRPA calculations are not always as
easy to disentangle as in the above examples, because
additional factors come into play, for example, deformation
changes, occupation numbers due to pairing, and wave
functions consisting of several asymptotic components.
Concerning the interesting case of N ¼ 100, where

evidence for a deformed subshell gap was discussed [8],
we could not find a convincing signature in the half-life
trend. The half-life of 161

61 Pm100 is longer than that of

160
61 Pm99, which is somewhat intriguing (see Fig. 3), but
similar features were not found in other elements.
To evaluate the impact of the newlymeasured half-lives on

the r-process modeling, fully dynamic r-process network
calculations [33] were performed. As to the role of half-lives
in the dynamical REE peak formation we intend to study,
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Roles of pairing and def. on beta-decay: naive picture

Eβ: 0

phase-space factor

energy of emitted beta particle

E*: excitation energy wrt daughter nucleus
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distortion of Fermi surfaces

sensitive to shell structure 
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Pairing and deformation for low-lying GT states

ν1h9/2 → π1h11/2

Strengths are concentrated on a single state w/ high energy

T1/2 = 0.27 s

T1/2 = 0.14 s

T1/2 = 0.53 s

Energies are shifted higher
pairing gaps

Low-lying strengths are reduced
distortion of Fermi surfaces

T1/2 = 0.31(20) s
Exp.

SLy4 + pairing functional of M. Yamagami et al., PRC80(2009)064301
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Pairing and deformation for low-lying GT states
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Summary (I)
TDDFT gives an intuitive picture of nuclear dynamics

allowing the breaking of symmetries: rotational symmetry in space/gauge space,

by looking at the density distributions

Linear response is a powerful method to investigate vibration of densities

we can include the many-body correlations in a simple way

(Q)RPA on top of the deformed state includes (partly) the non-perturbed phonon 
coupling effect

β-decay rates are sensitive to the details of the strengths in low-energy

nuclear deformation and superfluidity 
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FIG. 9. (Top panels) Half-lives for nuclei in the Ce (Z = 58, left)
and Nd (Z = 60, right) isotopic chains, calculated with the Skyrme
EDFs described in the text. Symbols correspond to the same EDFs as
in Fig. 6. (Bottom panels) Calculated half-lives of Ref. [17] (×), [33]
(+), and [83] (⋆), measured half-lives [82] (circles), and the range of
half-lives reported in this paper (shaded region).

strongly affect r-process abundances near A = 160. (Neutron-
odd nuclei do not significantly affect the r process because
they quickly capture neutrons to form even-N isotopes [1].)
Figures 9 and 10 present new calculated half-lives in four
isotopic chains, with even-Z isotopes in Fig. 9 and odd-Z
isotopes in Fig. 10. The top panels of these figures include
predictions with all five adjusted Skyrme EDFs, and the
bottom panels compare our calculations to measured values
[82] and the results of previous QRPA calculations [17,33,83]
where they are available. Our calculations span the (narrow)
range of predicted half-lives in these isotopic chains, with
SLy5 and UNEDF1-HFB predicting the shortest half-lives for
the most neutron-rich isotopes, as one could expect from
the analysis of Sec. III B 1. While the UNEDF1-HFB half-lives
are uniformly short, however, those of SLy5 actually are
the longest predictions (and the closest to measured values)
for nuclei nearer to stability. The variability of our half-life
predictions in Figs. 9 and 10 is typical of all 70 nuclei in the
calculation. The longest and shortest calculated half-lives for
any nucleus in our set differ by a factor ranging from about 1.9
to 3.3, and this interval does not depend strongly on whether
a nucleus has an even or odd number of protons.

The results of Refs. [17,33,83] are actually fairly similar to
ours, spanning roughly the full range of our predicted values in
Fig. 9. (Neither Ref. [33] nor [83] report half-lives for odd-Z
nuclei and so cannot be a part of Fig. 10.) The half-lives of
Ref. [33] are close to our own SkO′ half-lives, a result that
is unsurprising given that the EDF in that paper is a modified
version of SkO′ (and that we use the same pnFAM code). The
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FIG. 10. (Top panels) Half-lives for nuclei in the Cs (Z = 55, left)
and La (Z = 57, right) isotopic chains, calculated with the Skyrme
EDFs described in the text. Symbols correspond to the same EDFs as
in Figs. 6 and 9. (Bottom panels) Calculated half-lives from Ref. [17]
(×) superimposed upon the range of half-lives reported in this paper
(shaded region).

half-lives of Ref. [17] lie, for the most part, right in the middle
of our predictions and follow those of SV-min fairly closely
(the Q values are similar). Finally, Fang’s recent calculations
[83] yield relatively short half-lives, shorter than even those
of UNEDF1-HFB most of the time. Still, the band of predicted
half-lives is relatively narrow among these three calculations
even in the most neutron-rich nuclei. Reference [33] points out
that despite their differences, most global QRPA calculations
produce comparable half-lives. Our results in both A ≃ 80 and
A ≃ 160 nuclei support this observation.

Figures 9 and 10 (as well as Fig. 11, discussed momentarily)
show that the overall pattern of β decays in the A ≃ 160 region
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Q-Value Systematics for Isovector Giant Resonances Excited
by (p, n) Reactions on Zr, Nb, Mo, Sn, and Pb Isotopes

W. A. Sterrenburg, Sam M. Austin, H. P. DeVito, and Aaron Galonsky
Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824

(Q,eceived 7 July 1980)

The (P, n) reaction at 45 Mev is used to study two broad peaks found previously with
the target Zr. They have now been observed with all but one of seventeen targets from
Zr to pb. Energy systematics favor the conclusion that these peaks are antfanalogs
of the giant Ml and El resonances in the target nucleus. The first experimental deter-
minations of T, T —1 splittings of the giant El resonance are reported. Their low values
in comparison to T, T + 1 splittings observed previously can be interpreted as due to a
tensor part of the effective isospin potential.

PACS numbers: 25.40.Ep, 24.30.Cz

Many studies with (p, n) reactions have focused
on the most prominent feature in the neutron spec-
tra, i.e, on the isobaric analogs of ground states
(IAS). In the (p, g) reaction on '0Zr at a bombard-
ing energy of 45 MeV two other features were ob-
served. ' The first was a peak about 4 MeV wide
not far above the IAS which was interpreted as the
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The (p, n) studies were performed with the
beam-swinger neutron time-of-flight system at
Michigan State University. ' All targets were iso-
topically enriched, most to & 9570, and had thick-
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was a cylinder (12.7 cm diam &7.6 cm thick) of
NE-213 liquid scintillator placed 7 m from the
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Figure 2 shows neutron time-of-Qight spectra
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peak leaking through the pulse-shape discrimina-
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f% G, LS, and T denote central, spin-orbit, and tensor, respec- 
tively. The knockout exchange contributions have been included ap- 
proximately in the central and spin-orbit components. 

corrected on the basis of a recent low energy (p,p') study7'). For 
energies from loo-775 MeV the values are derived from the local fits 
to the two-nucleon t matrix described in ref. 9'73'74). Both these 
G and t matrix interactions are of the form given in eq. (3) and 
are qualitatively consistent, although not identical to the effec- 
tive interaction obtained from the nuclear matter approach6g-71) in 
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the data if we assume quadratic backgrounds and
Gaussian peaks. The widths for both broad peaks
were fixed at 3.6 MeV for all Sn isotopes, and a
search was made only for the centroids and the
heights. As one can see, both broad peaks shift
towards the IAS as the neutron excess increases.
This effect is even more visible in Fig. 3 where
the neutron spectra are shifted in energy so that
the IAS peaks all fall on the same vertical line,
thereby graphically correcting for the Coulomb

FIG. 3. Neutron spectra for ~2Zr, 93Nb, '4Mo, "Sn,
and Pb corrected for Coulomb displacement energies.
The 3Nb spectrum was measured at 11, the others at
7.5'. The upper four spectra are shifted for display
purposes. The bottom scale gives the neutron energies
for 2Zr only the upper scale gives the calibration
for the excitation energies in all the target nuclei.

displacement energies. ' Hence, points in a verti-
cal line correspond to the same excitation energy
(E„) in every target. For '"Pb the peak at lower
E„lies nearly under the IAS. In this case we
show an additional result of the fitting in which
the sharp IAS is neglected. Compared to the Sn
targets in which the broad peaks had widths of
3.6 Mev, in 'Pb the widths were only 2.9 MeV,
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We examine a method to determine the neutron-skin thickness of nuclei using data on the charge-
exchange anti-analog giant dipole resonance (AGDR). Calculations performed using the relativistic proton–
neutron quasiparticle random-phase approximation (pn-RQRPA) reproduce the isotopic trend of the
excitation energies of the AGDR, as well as that of the spin-flip giant dipole resonances (IVSGDR), in
comparison to available data for the even–even isotopes 112–124Sn. It is shown that the excitation energies
of the AGDR, obtained using a set of density-dependent effective interactions which span a range of the
symmetry energy at saturation density, supplemented with the experimental values, provide a stringent
constraint on value of the neutron-skin thickness. For 124Sn, in particular, we determine the value
!R pn = 0.21 ± 0.05 fm. The result of the present study shows that a measurement of the excitation
energy of the AGDR in (p,n) reactions using rare-isotope beams in inverse kinematics, provides a valuable
method for the determination of neutron-skin thickness in exotic nuclei.

© 2013 Elsevier B.V.

1. Introduction

An interesting phenomenon in nuclear structure is the forma-
tion of a skin of neutrons on the surface of a nucleus, and its
evolution with mass number in an isotopic chain [1]. A precise
measurement of the thickness of neutron skin is important not
only because this quantity represents a basic nuclear property,
but also because its value constrains the symmetry energy term
of the nuclear equation of state [2–7]. A detailed knowledge of
the symmetry energy is essential for describing the structure of
neutron-rich nuclei, and for modeling properties of neutron-rich
matter in applications relevant for nuclear astrophysics.

The difference between the neutron and proton rms radii is
rather small (few percent) and a precise measurement of the
neutron-skin thickness presents a considerable challenge. Several
methods have been used to determine this quantity [2,8–13], but
almost all of these are applicable only to stable nuclei and the
results are model dependent [10]. Methods based on coherent
nuclear motion include excitations of the isovector giant dipole
resonance (IVGDR) [9], the isovector spin giant dipole resonance
(IVSGDR) [10], the Gamow–Teller resonance (GTR) measured rel-
ative to the isobaric analog state (IAS) [14], and high-resolution
study of the electric dipole polarizability [3].

* Corresponding author.
E-mail address: kraszna@atomki.hu (A. Krasznahorkay).

The Pb radius experiment (PREX) at JLAB [5] has initiated
a new line of research based on the parity-violating elastic elec-
tron scattering to measure the neutron density radius Rn , which in
turn allows to determine the neutron-skin thickness from !R pn =
Rn − R p , where R p is the radius of the proton density distribu-
tion. Although parity-violating elastic electron scattering provides
a model independent measurement of !R pn , its current precision
is far from satisfactory and the method cannot be applied to un-
stable isotopes.

Radioactive ion beams (RIBs) have recently been employed to
determine the neutron-skin thickness in unstable nuclei, specifi-
cally in measurements of reaction cross-sections and pygmy dipole
resonances [1,15,16]. For an accurate determination of this quan-
tity using RIBs, it is imperative to find a feasible method that
employs reactions with low-intensity RIBs in inverse kinematics.
We have recently introduced a new method [17,18] based on the
excitation of the anti-analog giant dipole resonance (AGDR) ob-
served in (p,n) reaction [19]. As pointed out by Krmpotić, the
excitation of the AGDR depends sensitively on the neutron-skin
thickness [20] and, therefore, !R pn could be deduced from the
measurement of AGDR excitation energy.

The main objective of this work is to test the method that de-
termines the neutron-skin thickness in nuclei from AGDR data. By
calculating excitation energies E(AGDR) and !R pn in a fully self-
consistent theoretical approach, and comparing to available data,
the feasibility of the method will be tested with the aim to pro-
vide a basis for future studies with RIBs.

0370-2693 © 2013 Elsevier B.V.
http://dx.doi.org/10.1016/j.physletb.2013.02.043
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Fig. 3. Calculated values of the neutron-skin thickness for the even–even Sn iso-
topes as a function of the mass number (filled circles connected by the solid
line), compared to experimental results obtained with the antiproton absorption
method [11] (triangles), from (p, p) scattering data [2] (crosses), and with the
IVSGDR method [10] normalized to the (p, p) result for 124Sn [2] (squares).

of the energy shift caused by the mixing with the IVSGDR. Below
we explain how this energy shift is determined.

Austin et al. [27] developed a phenomenological model to de-
scribe the variation with bombarding energy of the peak positions
of the AGDR and IVSGDR observed in (p,n) reactions. They as-
sumed that the position C of the centroid of the !L = 1 excitations
(including both the AGDR and IVSGDR) at a bombarding energy E p
is given by the weighted average of the energies:

C = σ0 E0 + σ1 E1

σ0 + σ1
= E0 − σ1/σ0

1 + σ1/σ0
!, (4)

where E0 (E1) is the energy of the AGDR (IVSGDR), ! = E0 − E1
and σ0 (σ1) is the cross-section for S = 0 (S = 1) transfer.
They estimated the σ1/σ0 ratio by σ1/σ0 ≈ (E p(MeV)/55)2 [27]
and obtained the energy of the AGDR in 124Sn to be 14.4 ±
2.2 MeV, which is completely different from any theoretical pre-
diction [27]. In reality, the centroid of the dipole strength distribu-
tion is usually determined by fitting the distribution by a Gaussian
or a Lorentzian curve. This makes a significant difference in case
of 124Sn, where the AGDR and the IVSGDR display very different
widths: 3.6 MeV [19] and 9 MeV [29], respectively.

To determine the energy shift of the AGDR peak at E p =
45 MeV from the empirical peak energy, we simulate the mixing
of the AGDR and IVSGDR by using their real widths of 3.6 MeV
and 9 MeV, the ratio of their intensities as approximated by Austin
et al. [27], and their energy difference ! = 2.3 MeV obtained from
Fig. 2. The composite spectrum is then fitted by a Gaussian curve
in a reasonably wide energy range (±5 MeV) around the position
of the peak, and this yields an energy shift of 0.33 MeV for the
AGDR.

The sensitivity of the centroid energy of the AGDR to the
neutron-skin thickness of 124Sn is explored by performing RHB +
pn-RQRPA calculations using a set of the effective interactions with
different values of the symmetry energy at saturation: a4 = 30,
32,34,36 and 38 MeV (and correspondingly different slopes of the
symmetry energy [6]) and, in addition, the DD-ME2 effective inter-
action (a4 = 32.3 MeV). In Fig. 4, the resulting energy differences
E(AGDR) − E(IAS) are plotted as a function of the corresponding
neutron-skin thickness !R pn predicted by these effective interac-
tions.

Fig. 4. The difference in the excitation energy of the AGDR and the IAS for the
target nucleus 124Sn, calculated with the pn-RQRPA using five relativistic effective
interactions characterized by the symmetry energy at saturation a4 = 30,32,34,

36 and 38 MeV (squares), and the interaction DD-ME2 (a4 = 32.3 MeV) (star). The
theoretical values E(AGDR) − E(IAS) are plotted as a function of the correspond-
ing ground-state neutron-skin thickness !R pn , and compared to the experimental
value.

Table 1
Values of the neutron-skin thickness (!R pn) of 124Sn determined using various ex-
perimental methods, in comparison with the neutron-skin thickness deduced in the
present work.

Method Ref. Date !R pn (fm)

(p, p) 0.8 GeV [8] 1979 0.25±0.05
(α,α′) IVGDR 120 MeV [40] 1994 0.21±0.11
antiproton absorption [11,12] 2001 0.19±0.09
(3He, t) IVSGDR + AGDR [10] 2004 0.27±0.07
pygmy dipole resonance [15,13] 2007 0.19±0.05
(p, p) 295 MeV [2,13] 2008 0.185±0.05
AGDR present result 2013 0.21±0.05

The two parallel solid lines in Fig. 4 delineate the region of the-
oretical uncertainty for the used set of effective interactions. When
adjusting the parameters of these interactions [30,39], an uncer-
tainty of 10% was assumed for the difference between neutron and
proton radii for the nuclei 116Sn, 124Sn, and 208Pb. This set of inter-
actions was also used to calculate the electric dipole polarizability
and neutron-skin thickness of 208Pb, 132Sn and 48Ca, in comparison
with the predictions of more than 40 non-relativistic and relativis-
tic mean-field effective interactions [7].

By comparing the experimental result for E(AGDR) − E(IAS) to
the theoretical energy differences (see Fig. 4), we deduce the value
of the neutron-skin thickness in 124Sn: !Rnp = 0.205 ± 0.050 fm
(including theoretical uncertainties). In Table 1 the value for !Rnp
determined in the present analysis is compared to previous results
obtained with a variety of experimental methods. The very good
agreement with previously determined values reinforces the ex-
pected reliability of the proposed method.

6. Conclusion and outlook

A method to determine the size of the neutron-skin thickness
in nuclei using data on the anti-analog giant dipole resonance
has been discussed. Charge-exchange (p,n) reactions provide an
excellent probe for the neutron-skin thickness, as already demon-
strated by measurement of the IVSGDR and GTR, and the AGDR
provides a complementary approach. In contrast to the IVSGDR,
which displays a complex underlying structure with three overlap-

pnRQRPA 
��J=30,32,34,36,38 
★:DD-ME2
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The anti-analog giant dipole resonance (AGDR) was separated from other excitations such as
the spin-dipole resonance by multipole decomposition analysis of the 208Pb( p⃗, n⃗) reaction at a
bombarding energy of Tp = 296 MeV. The polarization transfer observables were found to be
useful for carrying out this separation. The energy difference between the AGDR and the isobaric
analog state (IAS) was determined to be !E = 8.69 ± 0.36 MeV, where the uncertainty includes
both statistical and systematic contributions. Theoretical calculations using the proton-neutron
relativistic quasi-particle random phase approximation predicted a strong correlation between
!E and the neutron skin thickness !Rpn . Under the assumption that the correlation predicted in
this model is correct, the present !E value corresponds to a neutron skin thickness of !Rpn =
0.216 ± 0.046 ± 0.015 fm, where the first and second uncertainties are the experimental and
theoretical uncertainties, respectively.
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1. Introduction

For an atomic nucleus with N > Z , the neutron density distribution extends somewhat further than
the proton density distribution. The neutron skin thickness !Rpn is generally defined as the differ-
ence between the neutron and proton root-mean-square radii. The !Rpn value depends not only on
the neutron excess (N − Z) but also on the symmetry energy in the nuclear equation of state (EOS).
In fact, an almost linear relation between !Rpn and the symmetry energy has been suggested in
various mean-field models [1–3]. Therefore, precise information on !Rpn has become important
for obtaining the symmetry energy, which is essential for constraining neutron star models [4,5]. In
particular, !Rpn for 208Pb has been studied by various methods such as dipole polarizability [6],
elastic proton scattering [7], pygmy response [8], and parity-violating elastic electron scattering [9].

Another interesting method for studying !Rpn is excitation of the isovector giant dipole resonance
(IVGDR). In a macroscopic picture, the IVGDR is a collective vibration mode in which protons and
neutrons oscillate out of phase, with the symmetry energy acting as the restoring force. Therefore,
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analog state (IAS) was determined to be !E = 8.69 ± 0.36 MeV, where the uncertainty includes
both statistical and systematic contributions. Theoretical calculations using the proton-neutron
relativistic quasi-particle random phase approximation predicted a strong correlation between
!E and the neutron skin thickness !Rpn . Under the assumption that the correlation predicted in
this model is correct, the present !E value corresponds to a neutron skin thickness of !Rpn =
0.216 ± 0.046 ± 0.015 fm, where the first and second uncertainties are the experimental and
theoretical uncertainties, respectively.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Subject Index D13, D22

1. Introduction

For an atomic nucleus with N > Z , the neutron density distribution extends somewhat further than
the proton density distribution. The neutron skin thickness !Rpn is generally defined as the differ-
ence between the neutron and proton root-mean-square radii. The !Rpn value depends not only on
the neutron excess (N − Z) but also on the symmetry energy in the nuclear equation of state (EOS).
In fact, an almost linear relation between !Rpn and the symmetry energy has been suggested in
various mean-field models [1–3]. Therefore, precise information on !Rpn has become important
for obtaining the symmetry energy, which is essential for constraining neutron star models [4,5]. In
particular, !Rpn for 208Pb has been studied by various methods such as dipole polarizability [6],
elastic proton scattering [7], pygmy response [8], and parity-violating elastic electron scattering [9].

Another interesting method for studying !Rpn is excitation of the isovector giant dipole resonance
(IVGDR). In a macroscopic picture, the IVGDR is a collective vibration mode in which protons and
neutrons oscillate out of phase, with the symmetry energy acting as the restoring force. Therefore,

© The Author(s) 2013. Published by Oxford University Press on behalf of the Physical Society of Japan.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
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Constraints on the neutron skin and symmetry energy from the anti-analog giant
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We investigate the impact of the neutron skin thickness, !Rnp , on the energy difference between the anti-analog
giant dipole resonance (AGDR), EAGDR, and the isobaric analog state (IAS), EIAS, in a heavy nucleus such as
208Pb. For guidance, we first develop a simple and analytic, yet physical, approach based on the droplet model that
linearly connects the energy difference EAGDR − EIAS with !Rnp . To test this correlation on more fundamental
grounds, we employ a family of systematically varied Skyrme energy density functionals where variations on
the value of the symmetry energy at saturation density J are explored. The calculations have been performed
within the fully self-consistent Hartree-Fock (HF) plus charge-exchange random phase approximation (RPA)
framework. We confirm the linear correlation within our microscopic approach and we can compare our results
with available experimental data in 208Pb in order to extract a preferred value for !Rnp and, in turn, for the
symmetry energy parameters. Averaging the results from two available experimental data, our analysis gives
!Rnp = 0.236 ± 0.018 fm, J = 33.2 ± 1.0 MeV, and a slope parameter of the symmetry energy at saturation
L = 97.3 ± 11.2 MeV. The errors include the experimental uncertainties and a lower-limit estimate of model
uncertainties. These results are consistent with those extracted from different experimental data albeit L and
!Rnp are somewhat large when compared to previous estimations based on giant resonance studies. Possible
hints whether model dependence can explain this difference are provided.

DOI: 10.1103/PhysRevC.92.034308 PACS number(s): 21.60.Jz, 21.65.Ef, 21.10.Sf, 24.30.Cz

I. INTRODUCTION

Different experimental methods, either direct or indirect,
have been proposed to extract the value of the neutron skin
thickness in finite nuclei, that is, the difference between
neutron and proton root-mean-square radii,

!Rnp ≡ ⟨r2⟩1/2
n − ⟨r2⟩1/2

p . (1)

The neutron skin thickness is an observable that has kept much
attention from both experimental and theoretical viewpoints.
This is because it is one of the most promising observables in
nuclear structure to constrain the density dependence of the
symmetry energy around the nuclear saturation density [1–7].
The symmetry energy plays an important role in understanding
the mechanisms of different phenomena in nuclear physics and
nuclear astrophysics [8–28]: it directly affects the properties
of exotic nuclei, the dynamics of heavy-ion collisions, the
structure of neutron stars, and the simulations of core-collapse
supernova.

The Lead Radius Experiment (PREX) at the Jefferson
Laboratory has provided the first model-independent evidence
on the existence of a neutron-rich skin in 208Pb [29]. Relying
on the fact that the weak charge of the neutron is much
larger than the corresponding proton one, PREX used parity-
violating electron scattering to probe the neutron distribution
of 208Pb. To foster this field, more experiments have been

already approved with both the aim of improving the reached
accuracy in 208Pb and exploring other mass regions. On the
other side, neutron densities have been traditionally probed
mostly by nucleon or α scattering, for example, by using
proton elastic scattering on Sn and Pb isotopes [30] or by
measuring photons emitted during the decay of antiproton
states [31,32]. One can also obtain information on the neutron
skin thickness from giant resonance properties, such as the
excitation energy of the isovector giant dipole resonance
(IVGDR), the total electric dipole polarizability (αD), the
excitation energy of the isovector giant quadrupole resonance
(IVGQR), or, yet with more warnings, from the energy and
strength of the pygmy dipole resonance (PDR) in neutron-rich
nuclei [33–45]. Last but not least, the total strength of the
charge-exchange spin-dipole resonances (SDR) can be related
to the neutron skin in a very transparent way [7,46–51]. It
is important to mention, however, that all hadronic probes
require model assumptions to deal with the strong force
introducing possible systematic uncertainties.

Recently, the authors of Refs. [52–54] have proposed a
new method to extract the neutron skin thickness based on
the measurement of the excitation energy of the anti-analog
giant dipole resonance (AGDR), that can be observed in the
charge-exchange (p,n) reaction. The AGDR was first studied
experimentally in Ref. [55]. Already in Ref. [56], the authors
had pointed out that the excitation energy of the AGDR is
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FIG. 2. (Color online) The (a) IAS and (b) AGDR response
functions calculated by using the SAMi-J Skyrme energy density
functionals. The discrete RPA peaks have been smeared out by using
Lorentzian functions with (a) 300 keV and (b) 3 MeV width.

SAMi-J functionals is that in the former case the nucleon
effective mass varies (in steps of 0.05) when fitting the
parameters while K∞, J , and L are kept constant (as above,
we refer to [42] for details). The red squares in the panels
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The top circle in the line of circles of each window corresponds to
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FIG. 4. (Color online) The energy difference EAGDR − EIAS of
AGDR and IAS as a function of neutron skin thickness, obtained
by using the SAMi-J family of Skyrme functionals consistently.
The calculated values are presented as solid circles. Two different
experimental data [54,57] are also shown as solid (magenta) and
dashed (blue) lines, respectively. The arrows indicate the neutron
skin constrained by these experimental data. We also display results
obtained with the covariant DD-ME Lagrangians of Refs. [52,54].
Interestingly, such models predict the same kind of correlation
although with a different slope.

correspond to results from SAMi-m. The results obtained from
SAMi-J (black circles) are displayed in such a way that the
bottom (top) point corresponds to the highest (lowest) value of
J . The conclusion from these panels is that the excitation
energy of the AGDR is sensitive to the symmetry energy
at saturation density while, as expected, the variation of the
AGDR excitation energy within the sets of the family SAMi-m
is small. In the case of the IAS, the excitation energy is neither
sensitive to the symmetry energy nor to the effective mass.

The calculated energy differences EAGDR − EIAS between
AGDR and IAS, obtained by employing the SAMi-J Skyrme
functionals, are displayed as a function of the corresponding
neutron skin thickness in Fig. 4: in particular, the solid circles
correspond to the sets SAMi-J27 to SAMi-J35, from left to
right. As we mentioned above, for the excitation energy of
the AGDR we take the centroid of the theoretical strength
distribution, calculated in the energy interval from 5 to 15 MeV
above the IAS energy. The results show that the energy
differences EAGDR − EIAS between AGDR and IAS decrease
with increasing values of the neutron skin thickness, and a
strong linear correlation exists; this is quite well justified by
the model that has been developed in Sec. III.

For the reader’s convenience, we also display some re-
sults obtained using the covariant DD-ME Lagrangians of
Refs. [52,54]. These obey the same kind of scaling as we
have predicted with the model of Sec. III, and yet the
slope is different. This illustrates, to a quite large extent,
the model dependence of such kind of analysis. The two
classes of functionals, SAMi and DD-ME, are recent and yet
based on different theoretical frameworks (nonrelativistic and
relativistic, respectively) and fitting protocols. These different
fitting strategies (notably, the choices to attempt reproducing
the neutron equation of state from ab initio approaches and
the spin-isospin Landau parameters, that are made in the case
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First-forbidden vector (FFV) modes
= charge-exchange dipole ~ anti-analog dipole

ÔKµ =

∫
dr
∑

σσ′
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rY1Kδσ,σ′⟨τ |τµ|τ ′⟩ψ̂†(rστ )ψ̂(rσ′τ ′)

F (r, r′) = δ(r, r′)rLYL

F (r, r′) = 1

⟨τ |τ±|τ ′⟩

m1 =

∫
dωωS(ω) =
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2]

+ (v20 + v21σ1 · σ2)τ1 · τ2[k† · δ(r1 − r2)k]
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v̄ph(12; 1
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αβâβ̄,πâᾱ,ν

EN =
N2
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1

focus on μ=-1 excitations in neutron-rich nuclei

effect of isospin mixing(?) not discussed

(anti-)analog of pygmy dipole (Low-energy dipole) mode??

understanding of PDR (LED) in terms of iso-triplet states

appearance of the low-lying mode and its effect on FF transitions?

general mechanism for emergence of the PDR
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(quasi )neutrons are in the continuum when |λ|≃0

cross-shell (N→N-1) excitation in low-energy

π ν

N-1

N

Mechanism for the occurrence of the low-lying FFV mode

excitation
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ÔKµσµτ =

∫
dr
∑

σσ′

∑

ττ ′

rY1K⟨σ|σµσ |σ′⟩⟨τ |τµτ |τ ′⟩ψ̂†(rστ )ψ̂(rσ′τ ′)

τµ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−
1
√
2
(τx + τy) (µ = +1)

τz (µ = 0)
1
√
2
(τx − τy) (µ = −1)

ÔKµ =

∫
dr
∑

σσ′

∑

ττ ′

rY1Kδσ,σ′⟨τ |τµ|τ ′⟩ψ̂†(rστ )ψ̂(rσ′τ ′)

F (r, r′) = δ(r, r′)rLYL

F (r, r′) = 1

⟨τ |τ±|τ ′⟩

m1 =

∫
dωωS(ω) =

1

2
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neutrons are weakly bound

protons are deeply bound



Onset of low-lying FFV mode: sensitive to the shell structure
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Onset of low-lying FFV mode: sensitive to the shell structure

summed strength in low-energy
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Onset of low-lying FFV mode: sensitive to the shell structure

summed strength in low-energy
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Onset of low-lying FFV mode: sensitive to the shell structure

summed strength in low-energy
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ν2d5/2 → π2p3/2 
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cross-shell (N→N±1) excitation for negative-parity excitation
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produces fractional occupation probabilities of p1/2 (52.4%)
and f5/2 orbits (18.2%).

B. Medium-heavy nuclei in the neutron-rich side
(28 ! Z ! 50 and N " Z)

In Fig. 9, we show the neutron number dependence of
fPDR for isotopes with Z = 28–50. The characteristic cusps
can be seen at N = 50 and 82, which correspond to the
neutron magic numbers. While the neutrons are filling the
g9/2 intruder orbit (40 < Z ! 50), the PDR fraction stays
approximately constant with respect to the neutron number.
Especially, the isotopes with Z = 36–50 (Kr–Sn) have roughly
identical values of fPDR at N ! 50. Beyond N = 50, the
neutrons start occupying the d5/2 orbit; then, the rapid increase
in fPDR is clearly observed in Fig. 9. These are universal for
all the isotopes shown in Fig. 9, although the cusp behavior is
weakened by increasing the proton number. These are similar
to the cusps at N = 14 and 28 in lighter neutron-rich isotopes.

In addition, for the isotopes with Z = 32–44, the convex
cusps also appear at around N = 58–60 and around N =
72–74, while the concave ones can be seen at N = 60–62.
These cusps are most prominent around the proton subshell
(Z ≈ 40), while they become weaker approaching the magic
numbers, Z → 28 and Z → 50. This suggests that these may
be associated with the ground-state deformation.

Let us briefly comment on the deformation effect. In Ne
and Mg neutron-rich isotopes, the present results suggest that
the onset of deformation in the ground state increases fPDR.
However, the behavior in the present mass region is more com-
plex. fPDR decrease at the onset of deformation around; then,
they decrease again near N = 74, which corresponds to the
disappearance of the deformation back to the spherical shape.
In Sec. IV, we discuss the effect of deformation in more details.

The next jump in fPDR at N = 82 → 84 is clearly identified.
This suggests that the definition of the “low-ℓ orbits” is
different between light and heavy systems. The nuclei around
N = 82 are all calculated to be spherical, thus it cannot be the
effect of deformation. The single-particle orbit just above the
N = 82 shell gap is f7/2. In light nuclei, when the Fermi level
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FIG. 9. (Color online) The PDR fraction fPDR as functions of the
neutron number for even-even isotopes with Z = 28–50 and N " Z.

is located at the f7/2 intruder orbits (20 < N ! 28), the PDR
fraction does not increase (see Fig. 8). The behavior of fPDR

in the heavy isotopes seems to be very different from that in
light systems. The f orbit may be regarded as the low-ℓ orbit
for heavy nuclei with N > 82.

Finally, the effect of pairing should be noted. In Ref. [57],
similar studies with the HF+RPA were reported for isotopes
with Z ! 40. The neutron shell effect on fPDR is qualitatively
identical. However, the HF calculation for heavy isotopes
shows peculiar changes in the ground-state deformation from
one nucleus to the next, which leads to irregular behaviors
in fPDR in the region of N > 56. These irregular behaviors in
Ref. [57] are hindered in the present study. This is due to the
pairing correlation, which produces the fractional occupation
probabilities, suppressing the sudden changes in deformation
from nucleus to nucleus. Now, some systematic trends in
the region 56 < N < 82 can be observed in Fig. 9. For
instance, increasing the proton number from Z = 28, the kink
behavior around N = 60 becomes sharper toward Z = 38 (Sr)
and 40 (Zr); then, beyond Z = 40, it becomes weaker and
disappears near Z = 50 (Cd and Sn). A similar systematic
behavior can be also observed for kinks around N = 72.

C. Neutron skin thickness and PDR fraction

The classical picture of the PDR is a vibration of neutron-
skin against the core part, from which, the correlation between
skin-thickness and PDR is expected. In this section, we
perform a systematic investigation and present the correlation
between fPDR and the skin thickness "rrms for many isotopes.
The neutron skin thickness is defined by the difference in
root-mean-square radius of neutrons and protons, "rrms ≡√

⟨r2⟩n −
√

⟨r2⟩p.
Figure 10 shows fPDR as a function of the neutron skin

thickness. For Ge, Se, Kr, Sr, and Zr isotopes, a similar
investigation was performed with the HF+RPA [57]. A
consistent behavior with Ref. [57] is confirmed in the left
panel of Fig. 10. There is a linear correlation between fPDR and
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FIG. 10. (Color online) The PDR fractions as functions of the
neutron skin thickness for even-even isotopes with Z = 28–50. The
open circles (triangles) indicate those with N = 50 (82).
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A. Light nuclei in the neutron-rich side
(6 ! Z ! 20 and N " Z)

First, we show the behavior of the low-lying E1 strength
in relatively light even-even isotopes with Z = 6–20 which
have a chemical potential larger than 2 MeV. Table I in
the Appendix shows the ground-state properties calculated
with the HF+BCS calculation for isotopes with 6 ! Z ! 20.
The results of the HF calculation neglecting the pairing
correlation are also shown for comparison. There are some
difference in the ground-state deformation between HF+BCS
and HF calculations, among which 32Mg shows the largest
difference, βHF

2 = 0.35 and βHF+BCS
2 = 0.0. Nevertheless, for

most isotopes, the pairing correlations do not drastically
change the ground-state properties.

Figure 7 shows the neutron-number dependence of fPDR for
C, O, Ne, and Mg isotopes. The solid lines with filled symbols
indicate the present results, which can be compared with
those of the Hartree-Fock plus random-phase approximation
(HF+RPA) [57] presented by the dashed lines with open
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FIG. 7. (Color online) Fraction of the low-lying E1 strength fPDR

in Eq. (13) as functions of the neutron number for C, O, Ne and Mg
isotopes. The solid lines with filled symbols show the present results
of Cb-TDHFB, while the dashed lines with open symbols show those
of HF+RPA.

symbols. The two kinds of calculations produce qualitatively
the same results. This confirms that the pairing plays a minor
role in the low-energy E1 strength function for these light
nuclei.

The isotopes with Z = 8–12 have fPDR less than 1.0%
for N ! 14. Then, there is a sudden jump in fPDR at N =
14 → 16 on every isotopic chain. The neutron number N = 16
corresponds to the occupation of s1/2 orbit. The important role
of the weakly bound s1/2 orbit in the low-energy E1 strengths
has been discussed in Ref. [57]. The present result confirms
that the pairing correlations do not change the main conclusion.
Note that the neutrons are in the normal phase ("n = 0) for
nuclei with N = 16. The largest deviation from the HF+RPA
result is seen in 32Mg, which is due to the large difference in
the ground-state deformation.

The HF+RPA calculation predicts that the next jump in
fPDR is at N = 28 → 30 [57]. N = 30 correspondS to the
occupation of p3/2 orbit. This is shown in Fig. 8, for S, Ar,
and Ca isotopes. The qualitative behaviors are identical to
those of the HF+RPA calculation. For Si, the kink of fPDR

disappears because the N = 28 magicity becomes weak in
the neutron-rich Si isotopes, leading to deformed shapes in
the mean-field calculation (see Table I). However, for S and
Ar isotopes, the sudden jump at N = 28 → 30 predicted by
the HF+RPA is now replaced by a gradual increase in the
slope around N = 28. This smooth evolution of the fPDR is
caused by the fractional occupation probability of the special
single-particle states, such as p3/2 and p1/2 orbits, due to the
pairing correlation. Again, the occupation of weakly bound
orbits with low orbital angular momenta (low-ℓ) increases the
low-energy E1 strength. Beyond N = 34, the neutrons start
occupying the f5/2 orbit, which reduces the slope in fPDR.

In contrast, for Ca isotopes, the sudden jump at N =
28 → 30 survives in the present calculation, mainly because
of a large shell gap at N = 28 which makes the neutron
pairing gap vanish ("n = 0). At N = 34, fPDR in the present
calculation becomes smaller than the result from HF+RPA.
This is due to the pairing effect. In the HF calculation, the
ground state in 54Ca corresponds to the full occupation of
the neutron p1/2 orbit. However, the HF+BCS calculation
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FIG. 8. (Color online) Same as Fig. 7, but for Si, S, Ar and Ca
isotopes.
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occupation of weakly-bound p3/2 (N>28), d5/2(N>50),  
and f7/2 and f5/2 (N>82)

summed strength below GDR (except the low-lying states)



Summary (II)

✓ LLFFV state appears uniquely in very neutron-rich nuclei

excitation

✓ strong shell effect

steady selection rule due to deeply-bound proton orbitals
weak collectivity

begin

−1!ω

end
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σ

ψ̂†
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ωrot

1

# of neutron hole states satisfying the selection rule is limited

✓ effect on the beta-decay rate and beta-delayed neutron emission in future
axial-vector (spin-dipole) modes also should be considered

✓ emergence of (anti)analog PDR below giant resonance


