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Isospin symmetry preserving 
energy density functional

and
its breaking effect on nuclear mass

Sato et al. PRC 88, 061301(R) (2013)
Sheikh et al. PRC 89, 054317 (2014)
Baczyk et al. arXiv: 1701.04628.



Isoscalar and isovector densities
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One-body isoscalar and isovector density operators

Energy density functionals of              are not invariant 
under the rotation in the isospace.
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Rotational invariance in isospace
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Energy density functional (EDF)  of            , or 

EDF of 
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General EDF from: Perlinska et al, PRC 69, 014316(2004)

The Coulomb energy is anisotropic in the 
isospin space, but the rests are (almost) 
isotropic.



p-n mixed s.p. wave functions

Standard unmixed neutron and proton w. f.

Diagonal n and p
densities

Hartree-Fock representation of density
(Kohn-Sham)

Off-diagonal p & n
densities

p-n mixing is required in the single-particle orbitals

(p,n) è (1,2)

pn-mixed orbitals

φ1 = φn, φ2 = φp

ρ = φi φi
i:occ
∑



Isocranking calculation
• Standard HF calculation

– (N,Z) are specified.
• pn-mixed HF calculation

– Only A=N+Z is specified.
– Additional constraint is necessary

• Direction of isospin
– Cranking terms

– Eigenvalues: Routhians
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Tilted cranking for IAS
• Standard HF calculation

– Proton & neutron Fermi levels
• pn-mixed HF calculation

– Nucleon Fermi level only

– Cranking term           should lead to
– Change the direction (tilted-axis) to obtain IAS 

with different Tz

εF
(n), εF

( p)

εF

εF
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HFODD(1997-) 

• Skyrme energy density functional
• Hartree-Fock or Hartree-Fock-Bogoliubov
• No spatial & time-reversal symmetry restriction
• Harmonic-oscillator basis
• Multi-function (constrained HFB, cranking, angular mom. 

projection, isospin projection, finite temperature….)

http://www.fuw.edu.pl/~dobaczew/hfodd/hfodd.html

We have developed a code for pnHF by extending an HF(B)  solver

J. Dobaczewski, J. Dudek, Comp. Phys. Comm 102 (1997) 166.
J. Dobaczewski, J. Dudek, Comp. Phys. Comm. 102 (1997) 183.
J. Dobaczewski, J. Dudek, Comp. Phys. Comm. 131 (2000) 164.
J. Dobaczewski, P. Olbratowski, Comp. Phys. Comm. 158 (2004) 158.
J. Dobaczewski, P. Olbratowski, Comp. Phys. Comm. 167 (2005) 214.
J. Dobaczewski, et al., Comp. Phys. Comm. 180 (2009) 2391.
J. Dobaczewski, et al., Comp. Phys. Comm. 183 (2012) 166.



A=48 isobars
w/o Coulomb

(T, Tz) are controlled 
by the “isocranking”.

Energies are independent of Tz

zT

xT

θ

In addition to the ground 
state, the IAS are 
described by HF states.

48Ca48Ni

48Ti

48Cr

48Fe

T = 4

−λzTz−λxTx

No p-n mixing  at |Tz|=T



48Ca48Ni

!90=ʹθ

No p-n mixing  at |Tz|=T

(almost linear dependence)

A=48 isobars
with Coulomb

Energies now depend on Tz
because of the Coulomb int.

T = 4
Single-particle routhians
are roughly independent 
on the direction of T.



pure n

pure p

40Mg
40Ni

A=40 isobars for T=8 IAS’s
Total energy

Coulomb energy

T=8

Energy difference mostly comes from the Coulomb 
energy difference.
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Fig. 6. Quadrupole deformation β2 calculated
for the T ≃ 4 and T ≃ 8 IASs in A = 40 isobars
with the Coulomb interaction included.

-470

-465

-460

-455

-1 -0.5  0  0.5  1

Calc.
Exp.

En
er

gy
 (M

eV
)

<Tz>

Fig. 7. Energies of T ≃ 1 isobaric analog
states in A = 54 isobars in comparison with the
experimental data [10]. The results of isocranking
calculations for every 30◦ of θ′ between θ′ = 0◦

and 180◦ are plotted.

isobars. In case of rigorous isospin conservation one should obtain ⟨T̂ 2⟩=72. The Coulomb
interaction breaks the isospin symmetry and gives a deviation from this value. However, even
in the case without the Coulomb interaction, the calculated ⟨T̂ 2⟩ deviates from the exact
value 72 due to the spurious isospin mixing within the mean-field approximation [7–9]. Note
that around Tz = 8 the spurious deviation is even larger than in the case with the Coulomb
interaction.

Fig. 5 shows the proton, neutron and total root-mean-square (rms) radii calculated with
the Coulomb interaction for the T ≃ 8 states in A = 40 isobars, together with the total
rms radius calculated without the Coulomb interaction. The neutron (proton) rms radius
increases with increasing (decreasing) ⟨T̂z⟩, that is, increasing the neutron (proton) com-
ponents. With the Coulomb interaction, the total rms radius increases with increasing the
proton components due to the Coulomb repulsion among protons. Without the Coulomb
interaction, it stays constant as a function of ⟨T̂z⟩. In Fig. 6, we depict the quadrupole defor-
mation parameter β2 calculated for the T ≃ 4 and T ≃ 8 IASs in A = 40 isobars. In both of
the IAS chains, the quadrupole deformation β2 is nearly constant, which illustrates the fact
that the s.p. configuration for all IASs stays the same.

In the A = 4n nuclei, such as the A=40 systems discussed above, even-T states are
the ground states of even-even nuclei and their IASs. We also performed calculations for
A = 4n + 2 nuclei, in which odd-T states are the ground states of even-even nuclei. As an
example of those calculations, in Fig. 7, we depict the calculated energies of the T = 1 triplet
in A = 54 isobars in comparison with the experimental data. Here, the I = 0+, T ≃ |Tz | = 1
states are the ground states of 54Fe and 54Ni and are described by the standard HF solutions
without the p-n mixing. On the other hand, the Tz = 0 IAS, the lowest I = 0+ state in 54Co,
is obtained by the isocranking calculation, and it consists of the p-n mixed s.p. states. It is
gratifying to see that both the energy of the Tz = 0 state as well as those of the |Tz| = 1
states are well reproduced by the theory. It is worth stressing that the Tz = 0 IAS in an
odd-odd nucleus is described here by means of a single time-even Slater determinant. This is
at variance with single-reference p-n unmixed EDF models, wherein such states do not exist
at all [11].

5

40Mg40Ni

IAS’s in A=40 isobars
Fig. 3. Single-particle Routhians of the T ≃ 8 states in A = 40 isobars calculated with the Coulomb
interaction included. The arrows at the upper left and upper right indicate the positions of the Fermi
energies at θ′ = 0◦ and 180◦, respectively.
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Fig. 5. Root-mean-square radii of the T = 8
IASs with A = 54 as functions of ⟨T̂z⟩.

θ′, and, unlike in the case of A = 48 [4], there is no large shell gap above the Fermi surface.
Nevertheless, with our choice of λ⃗, the level crossings are avoided. While the s.p. states are
pure proton or neutron states at θ = 0◦ and 180◦, which means that the |Tz| = T states
are nothing but the standard HF states without the p-n mixing, at all other tilting angles,
the s.p. states are p-n mixed. In particular, the proton and neutron components are almost
equally mixed at θ′ = 90◦, which corresponds to Tz ≈ 0.

Fig. 4 shows the expectation values of ⟨T̂ 2⟩ calculated for the T ≃ 8 states in A = 40

4

Deformation Radii for T=8 states

T=8

T=4

Deformation stays almost constant among IAS’s.

Proton and neutron radii changes, but the matter radius is roughly constant.

40Cr
40S

40Ca



Comparison with experiments

• Energies of T=1 triplets (with SkM*)

14O(g.s) 14N(excited 0+)

14C(g.s)

54Co(g.s)

54Ni(g.s)

54Fe(g.s)
(The origin of calc. BE is shifted by 3.2 MeV to 
correct the deficiency of SkM* functional in the  
panel for A=14)

A=54 isobars A=14 isobars



MDE & TDE
• Mirror Energy 

Displacement

• Triple Energy 
Displacement
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FIG. 1. (Color online) Calculated (no ISB terms) and exper-
imental values of MDEs (a) and TDEs (b). The values of
MDEs for triplets are divided by two to fit in the plot. Thin
dashed line shows the average linear trend of experimental
MDEs in doublets, defined as MDE = 0.137A + 1.63 (in
MeV). Measured values of binding energies were taken from
Ref. [22] and the excitation energies of the T = 1, Tz = 0
states from Ref. [23]. Open squares denote data that depend
on masses derived from systematics [22].

which is a measure of the binding-energy curvature
within the isospin triplet. The TDE also cannot be re-
produced by means of conventional approaches disregard-
ing nuclear CIB forces, see [14]. In these definitions the
binding energies are negative (BE < 0) and the proton
(neutron) has isospin projection of tz = � 1

2 (+
1
2 ).

In Fig. 1 we show MDEs and TDEs calculated fully
self-consistently using three di↵erent standard Skyrme
EDFs; SVT [15, 16], SkM⇤ [17], and SLy4 [18]. Details
of the calculations, performed using code HFODD [19,
20], are presented in the Supplemental Material [21]. In
Fig. 1(a), we clearly see that the values of obtained MDEs
are systematically lower by about 10% than the experi-
mental ones. Even more spectacular discrepancy appears
in Fig. 1(b) for TDEs – their values are underestimated
by about a factor of three and the characteristic stag-
gering pattern seen in experiment is entirely absent. It
is also very clear that the calculated MDEs and TDEs,
which are specific di↵erences of binding energies, are in-
dependent of the choice of Skyrme EDF parametrization,
that is, of the isospin-invariant part of the EDF.

We aim at comprehensive study of MDEs and TDEs
based on extended Skyrme pn-mixed DFT [16, 19, 20]
that includes zero-range class II and III forces. We con-

sider the following zero-range interactions of class II and
III with two new low-energy coupling constants tII0 and
tIII0 [24]:

V̂ II(i, j) =
1

2
tII0 � (ri � rj)

h
3⌧̂3(i)⌧̂3(j)� ~̂⌧(i) � ~̂⌧(j)

i
,(3)

V̂ III(i, j) =
1

2
tIII0 � (ri � rj) [⌧̂3(i) + ⌧̂3(j)] . (4)

The corresponding contributions to EDF read:

HII =
1

2
tII0 (⇢

2
n + ⇢2p � 2⇢n⇢p � 2⇢np⇢pn

�s2n � s2p + 2sn · sp + 2snp · spn), (5)

HIII =
1

2
tIII0

�
⇢2n � ⇢2p � s2n + s2p

�
, (6)

where ⇢ and s are scalar and spin (vector) densities,
respectively. Inclusion of the spin exchange terms in
Eqs. (3) and (4) leads to trivial rescaling of the cou-
pling constants tII0 and tIII0 , see [24]. Hence, it can be
disregarded.
Contributions of class III force to EDF (6) depend on

the standard nn and pp densities and, therefore, can be
taken into account within the conventional pn-separable
DFT approach [9]. In contrast, contributions of class II
force (5) depend explicitly on the mixed densities, ⇢np
and snp, and require the use of pn-mixed DFT [25, 26],
augmented by the isospin cranking to control the magni-
tude and direction of the isospin (T, Tz).
We implemented the new terms of the EDF in the code

HFODD [19, 20], where the isospin degree of freedom is
controlled within the isocranking method [25, 27, 28] –
an analogue of the cranking technique that is widely used
in high-spin physics. The isocranking method allows us
to calculate the entire isospin multiplet, T , by starting
from an isospin-aligned state |T, Tz = T i and isocrank-
ing it around the y-axis in the isospace. The method
can be regarded as an approximate isospin projection.
A rigorous treatment of the isospin symmetry within the
pn-mixed DFT formalism requires full, three-dimensional
isospin projection, which is currently under development.
Physically relevant values of tII0 and tIII0 turn out to be

fairly small [24], and thus the new terms do not impair
the overall agreement of self-consistent results with the
standard experimental data. Moreover, calculated MDEs
and TDEs depend on tII0 and tIII0 almost linearly, and, in
addition, MDEs (TDEs) depend very weakly on tII0 (tIII0 )
[24]. This allows us to use the standard linear regression
method, see, e.g. Refs. [29, 30], to independently adjust
tII0 and tIII0 to experimental values of TDEs and MDEs,
respectively. See Supplemental Material [21] for detailed
description of the procedure. Coupling constants tII0
and tIII0 resulting from such an adjustment are collected
in Table I.

In Fig. 2, we show values of MDEs calculated within
our extended DFT formalism for the Skyrme SVT EDF.
By subtracting an overall linear trend (as defined in

𝑀𝐷𝐸 ≡ 𝐸 𝑇, 𝑇' = −𝑇
−𝐸(𝑇, 𝑇' = +𝑇)

𝑇𝐷𝐸 ≡ 𝐸 𝑇 = 1, 𝑇' = −1
	+𝐸 𝑇 = 1,𝑇' = +1
−2𝐸 𝑇 = 1,𝑇' = 0



Extension of EDF
Standard EDF (SLy4 as an example)

• Isospin-symmetry-breaking interaction
– Class II (CIB) and III (CSB)

– Two parameters, 𝑡233 and 𝑡2333 , are determined 
by fitting MDE and TDE.
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FIG. 1. (Color online) Calculated (no ISB terms) and exper-
imental values of MDEs (a) and TDEs (b). The values of
MDEs for triplets are divided by two to fit in the plot. Thin
dashed line shows the average linear trend of experimental
MDEs in doublets, defined as MDE = 0.137A + 1.63 (in
MeV). Measured values of binding energies were taken from
Ref. [22] and the excitation energies of the T = 1, Tz = 0
states from Ref. [23]. Open squares denote data that depend
on masses derived from systematics [22].

which is a measure of the binding-energy curvature
within the isospin triplet. The TDE also cannot be re-
produced by means of conventional approaches disregard-
ing nuclear CIB forces, see [14]. In these definitions the
binding energies are negative (BE < 0) and the proton
(neutron) has isospin projection of tz = � 1

2 (+
1
2 ).

In Fig. 1 we show MDEs and TDEs calculated fully
self-consistently using three di↵erent standard Skyrme
EDFs; SVT [15, 16], SkM⇤ [17], and SLy4 [18]. Details
of the calculations, performed using code HFODD [19,
20], are presented in the Supplemental Material [21]. In
Fig. 1(a), we clearly see that the values of obtained MDEs
are systematically lower by about 10% than the experi-
mental ones. Even more spectacular discrepancy appears
in Fig. 1(b) for TDEs – their values are underestimated
by about a factor of three and the characteristic stag-
gering pattern seen in experiment is entirely absent. It
is also very clear that the calculated MDEs and TDEs,
which are specific di↵erences of binding energies, are in-
dependent of the choice of Skyrme EDF parametrization,
that is, of the isospin-invariant part of the EDF.

We aim at comprehensive study of MDEs and TDEs
based on extended Skyrme pn-mixed DFT [16, 19, 20]
that includes zero-range class II and III forces. We con-

sider the following zero-range interactions of class II and
III with two new low-energy coupling constants tII0 and
tIII0 [24]:

V̂ II(i, j) =
1

2
tII0 � (ri � rj)

h
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V̂ III(i, j) =
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tIII0 � (ri � rj) [⌧̂3(i) + ⌧̂3(j)] . (4)

The corresponding contributions to EDF read:

HII =
1

2
tII0 (⇢

2
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�s2n � s2p + 2sn · sp + 2snp · spn), (5)

HIII =
1

2
tIII0

�
⇢2n � ⇢2p � s2n + s2p

�
, (6)

where ⇢ and s are scalar and spin (vector) densities,
respectively. Inclusion of the spin exchange terms in
Eqs. (3) and (4) leads to trivial rescaling of the cou-
pling constants tII0 and tIII0 , see [24]. Hence, it can be
disregarded.
Contributions of class III force to EDF (6) depend on

the standard nn and pp densities and, therefore, can be
taken into account within the conventional pn-separable
DFT approach [9]. In contrast, contributions of class II
force (5) depend explicitly on the mixed densities, ⇢np
and snp, and require the use of pn-mixed DFT [25, 26],
augmented by the isospin cranking to control the magni-
tude and direction of the isospin (T, Tz).
We implemented the new terms of the EDF in the code

HFODD [19, 20], where the isospin degree of freedom is
controlled within the isocranking method [25, 27, 28] –
an analogue of the cranking technique that is widely used
in high-spin physics. The isocranking method allows us
to calculate the entire isospin multiplet, T , by starting
from an isospin-aligned state |T, Tz = T i and isocrank-
ing it around the y-axis in the isospace. The method
can be regarded as an approximate isospin projection.
A rigorous treatment of the isospin symmetry within the
pn-mixed DFT formalism requires full, three-dimensional
isospin projection, which is currently under development.
Physically relevant values of tII0 and tIII0 turn out to be

fairly small [24], and thus the new terms do not impair
the overall agreement of self-consistent results with the
standard experimental data. Moreover, calculated MDEs
and TDEs depend on tII0 and tIII0 almost linearly, and, in
addition, MDEs (TDEs) depend very weakly on tII0 (tIII0 )
[24]. This allows us to use the standard linear regression
method, see, e.g. Refs. [29, 30], to independently adjust
tII0 and tIII0 to experimental values of TDEs and MDEs,
respectively. See Supplemental Material [21] for detailed
description of the procedure. Coupling constants tII0
and tIII0 resulting from such an adjustment are collected
in Table I.

In Fig. 2, we show values of MDEs calculated within
our extended DFT formalism for the Skyrme SVT EDF.
By subtracting an overall linear trend (as defined in



MDE
• Mirror energy 

displacement
– Can be well 

reproduced by

𝑡2333 = −7.4	MeV	fm<

for SVT

3

TABLE I. Coupling constants tII0 and tIII0 and their uncertain-
ties obtained in this work for the Skyrme EDFs SVT, SkM*,
and SLy4.

SVT SkM* SLy4

tII0 (MeV fm3) 17± 5 25± 8 23± 7
tIII0 (MeV fm3) �7.4± 1.9 �5.6± 1.4 �5.6± 1.1

Fig. 1) we are able to show results in extended scale,
where a detailed comparison with experimental data is
possible. In Fig. 3, we show results obtained for TDEs,
whereas complementary results obtained for the Skyrme
SkM* and SLy4 EDFs are collected in the Supplemental
Material [21].

It is gratifying to see that the calculated values of
MDEs closely follow the experimental A-dependence, see
Fig. 2. It is worth noting that a single coupling con-
stant tIII0 reproduces both T = 1

2 and T = 1 MDEs,
which confirms conclusions of Ref. [9]. In addition, for
the T = 1

2 MDEs, the SVT results nicely reproduce (i)
changes in experimental trend that occur at A = 15 and
39, (ii) staggering pattern between A = 15 and 39, and
(iii) disappearance of staggering between A = 41 and 49
(the f7/2 nuclei). We note that these features are already
present in the SVT results without the ISB terms, and
that adding this terms increases amplitude of the stag-
gering. However, for the SkM* and SLy4 functionals, the
staggering of the T = 1

2 MDEs is less pronounced [21].
We also note that all three functionals correctly describe
the A-dependence and lack of staggering of the T = 1
MDEs.

It is even more gratifying to see in Fig. 3 that our
pn-mixed calculations, with the class-II coupling con-
stant, tII0 , describe absolute values as well as stagger-
ing of TDEs very well, whereas results obtained without
ISB terms give too small values and show no stagger-
ing. Good agreement obtained for the MDEs and TDEs
shows that the role and magnitude of the ISB terms are
now firmly established.

It is very instructive to look at ten outliers which were
excluded from the fitting procedure. They are shown by
open symbols in Figs. 2 and 3. (i) There are five outliers
that depend on masses of 52Co, 56Cu, and 73Rb, which
clearly deviate from the calculated trends for MDEs and
TDEs. These masses were not directly measured but
derived from systematics [22]. (ii) There are two out-
liers that depend on the mass of 44V, whose ground-state
measurement may be contaminated by an unresolved iso-
mer [31–33]. (iii) Large di↵erences between experimental
and calculated values are found in MDE for A = 16, 67
and 69. Inclusion of these data in the fitting procedure
would significantly increase the uncertainty of adjusted
coupling constants. The former two, (i) and (ii), call for
improving experimental values, whereas the last one (iii)
may be a result of structural e↵ects not included in our

T = 1
2

M
D
E
/
2
T

�
M
D
E

A

T = 1

T

FIG. 2. (Color online) Calculated and experimental values of
MDEs for the T = 1

2 (a) and T = 1 (b) mirror nuclei, shown
with respect to the average linear trend defined in Fig. 1.
Calculations were performed for functional SVT with the ISB
terms added. Shaded bands show theoretical and experimen-
tal uncertainties. Full (open) symbols denote data points in-
cluded in (excluded from) the fitting procedure.

model.
Having at hand a model with ISB strong interactions

with fitted parameters we can calculate MDEs for more
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TABLE I. Coupling constants tII0 and tIII0 and their uncertain-
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SkM* and SLy4 EDFs are collected in the Supplemental
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It is gratifying to see that the calculated values of
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Fig. 2. It is worth noting that a single coupling con-
stant tIII0 reproduces both T = 1

2 and T = 1 MDEs,
which confirms conclusions of Ref. [9]. In addition, for
the T = 1

2 MDEs, the SVT results nicely reproduce (i)
changes in experimental trend that occur at A = 15 and
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(the f7/2 nuclei). We note that these features are already
present in the SVT results without the ISB terms, and
that adding this terms increases amplitude of the stag-
gering. However, for the SkM* and SLy4 functionals, the
staggering of the T = 1

2 MDEs is less pronounced [21].
We also note that all three functionals correctly describe
the A-dependence and lack of staggering of the T = 1
MDEs.

It is even more gratifying to see in Fig. 3 that our
pn-mixed calculations, with the class-II coupling con-
stant, tII0 , describe absolute values as well as stagger-
ing of TDEs very well, whereas results obtained without
ISB terms give too small values and show no stagger-
ing. Good agreement obtained for the MDEs and TDEs
shows that the role and magnitude of the ISB terms are
now firmly established.

It is very instructive to look at ten outliers which were
excluded from the fitting procedure. They are shown by
open symbols in Figs. 2 and 3. (i) There are five outliers
that depend on masses of 52Co, 56Cu, and 73Rb, which
clearly deviate from the calculated trends for MDEs and
TDEs. These masses were not directly measured but
derived from systematics [22]. (ii) There are two out-
liers that depend on the mass of 44V, whose ground-state
measurement may be contaminated by an unresolved iso-
mer [31–33]. (iii) Large di↵erences between experimental
and calculated values are found in MDE for A = 16, 67
and 69. Inclusion of these data in the fitting procedure
would significantly increase the uncertainty of adjusted
coupling constants. The former two, (i) and (ii), call for
improving experimental values, whereas the last one (iii)
may be a result of structural e↵ects not included in our
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ties obtained in this work for the Skyrme EDFs SVT, SkM*,
and SLy4.
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tII0 (MeV fm3) 17± 5 25± 8 23± 7
tIII0 (MeV fm3) �7.4± 1.9 �5.6± 1.4 �5.6± 1.1

Fig. 1) we are able to show results in extended scale,
where a detailed comparison with experimental data is
possible. In Fig. 3, we show results obtained for TDEs,
whereas complementary results obtained for the Skyrme
SkM* and SLy4 EDFs are collected in the Supplemental
Material [21].

It is gratifying to see that the calculated values of
MDEs closely follow the experimental A-dependence, see
Fig. 2. It is worth noting that a single coupling con-
stant tIII0 reproduces both T = 1

2 and T = 1 MDEs,
which confirms conclusions of Ref. [9]. In addition, for
the T = 1

2 MDEs, the SVT results nicely reproduce (i)
changes in experimental trend that occur at A = 15 and
39, (ii) staggering pattern between A = 15 and 39, and
(iii) disappearance of staggering between A = 41 and 49
(the f7/2 nuclei). We note that these features are already
present in the SVT results without the ISB terms, and
that adding this terms increases amplitude of the stag-
gering. However, for the SkM* and SLy4 functionals, the
staggering of the T = 1

2 MDEs is less pronounced [21].
We also note that all three functionals correctly describe
the A-dependence and lack of staggering of the T = 1
MDEs.

It is even more gratifying to see in Fig. 3 that our
pn-mixed calculations, with the class-II coupling con-
stant, tII0 , describe absolute values as well as stagger-
ing of TDEs very well, whereas results obtained without
ISB terms give too small values and show no stagger-
ing. Good agreement obtained for the MDEs and TDEs
shows that the role and magnitude of the ISB terms are
now firmly established.

It is very instructive to look at ten outliers which were
excluded from the fitting procedure. They are shown by
open symbols in Figs. 2 and 3. (i) There are five outliers
that depend on masses of 52Co, 56Cu, and 73Rb, which
clearly deviate from the calculated trends for MDEs and
TDEs. These masses were not directly measured but
derived from systematics [22]. (ii) There are two out-
liers that depend on the mass of 44V, whose ground-state
measurement may be contaminated by an unresolved iso-
mer [31–33]. (iii) Large di↵erences between experimental
and calculated values are found in MDE for A = 16, 67
and 69. Inclusion of these data in the fitting procedure
would significantly increase the uncertainty of adjusted
coupling constants. The former two, (i) and (ii), call for
improving experimental values, whereas the last one (iii)
may be a result of structural e↵ects not included in our
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terms added. Shaded bands show theoretical and experimen-
tal uncertainties. Full (open) symbols denote data points in-
cluded in (excluded from) the fitting procedure.

model.
Having at hand a model with ISB strong interactions

with fitted parameters we can calculate MDEs for more
massive multiplets and make predictions on binding en-
ergies of neutron-deficient (Tz = �T ) nuclei. In par-
ticular, in Table II we present predictions of mass ex-
cesses of 52Co, 56Cu, and 73Rb, whose masses were in
AME12 [22] derived from systematics, and 44V, whose
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TDEs with no linear trend subtracted.

4

TABLE II. Mass excesses of 52Co, 56Cu, 73Rb, and 44V ob-
tained in this work and compared with those of AME12 [22].
Our predictions were calculated as weighted averages of val-
ues obtained from MDEs and TDEs for all three used Skyrme
parametrizations. The AME12 values derived from systemat-
ics are labelled with symbol #.

Mass excess (keV)
Nucleus This work AME12 [22]

52Co �34450(50) �33990(200)#
56Cu �38720(50) �38240(200)#
73Rb �46100(80) �46080(100)#
44V �23770(50) �24120(180)

ground-state mass measurement is uncertain. Recently,
the mass excess of 52Co was measured as �34361(8) [34]
or �34331.6(66) keV [35]. These values are in fair agree-
ment with our prediction (1.8 or 2.4� di↵erence with
respect to our estimated theoretical uncertainty), even
though the di↵erence between them is still far beyond the
estimated (much smaller) experimental uncertainties.
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FIG. 4. (Color online) Coupling constants tII0 (a) and tIII0 (b),
Table I, shown here together with their average value and
uncertainties. Panel (c) shows ratios of coupling constants
tII0 /t

III
0 compared with the corresponding estimate deduced

from the scattering lengths as in Eq. (7).

Assuming that the extracted CSB and CIB e↵ects
are, predominantly, due to the ISB in the 1S0 chan-
nel we can relate ratio tII0 / tIII0 to the experimental
scattering lengths. The reasoning follows the work of
T. Suzuki et.al [10], who assumed a proportionality be-
tween the strengths of CSB and CIB forces and the
corresponding scattering lengths [36], that is, VCSB /

�aCSB = app�ann and VCIB / �aCIB = 1
2 (app+ann)�

anp, which, in our case, is equivalent to tIII0 / � 1
2�aCSB

and tII0 / 1
3�aCIB . Assuming further that the propor-

tionality constant is the same, and taking for the ex-
perimental values �aCSB = 1.5 ± 0.3 fm and �aCIB =
5.7± 0.3 fm [36], one gets:

tII0
tIII0

= �2

3

�aCIB

�aCSB
= �2.5± 0.5. (7)

From the values of coupling constants given in Table I,
we obtain their ratios as tII0 / tIII0 =�2.3±0.9, �4.5±1.8,
and �4.1± 1.5 for the SVT, SkM*, and SLy4 EDFs, re-
spectively. Fig. 4 summarizes these values in comparison
with the estimate in Eq. (7). As we can see, the values
determined by our analysis of masses of N ' Z nuclei
with 10  A  75 agree very well with estimates based
on properties of the NN forces deduced from the NN
scattering experiments.

In summary, we showed that the pn-mixed DFT with
added two new terms related to the ISB interactions of
class II and III is able to systematically reproduce ob-
served MDEs and TDEs of T = 1

2 and T = 1 multiplets.
Adjusting only two coupling constants tII0 and tIII0 , we
reproduced not only the magnitudes of the MDE and
TDE but also their characteristic staggering patterns.
The obtained values of tII0 and tIII0 turn out to agree with
the NN ISB interactions (NN scattering lengths) in the
1S0 channel. We predicted mass excesses of 52Co, 56Cu,
73Rb, and 44V, and for 52Co we obtained fair agreement
with the recently measured values [34, 35]. To better pin
down the ISB e↵ects, accurate mass measurements of the
other three nuclei are very much called for.
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Summary

• Energy density functional including the 
proton-neutron mixing in single-particle 
orbitals

• Natural description of isobaric analogue 
states in terms of “Slater determinants”

• Extension of the EDF: Isospin symmetry 
breaking terms
– Good agreement with MDE and TDE
– Discrepancy for specific nuclei: 52Co, 56Cu, 

73Rb, 44V


