Fusion and quasifission dynamics in the synthesis of superheavy elements

Lu Guo

University of Chinese Academy of Sciences, Beijing

China-Japan collaboration workshop,

Tsukuba University, 26-28 June, 2017

Contents

- I. Introduction
 - background for SHE and TDHF
- II. Fusion and quasifission dynamics
 - neutron-rich target ⁴⁸Ca+²³⁹Pu and ⁴⁸Ca+²⁴⁴Pu
- **III.** Multi-nucleon transfer reaction
 - production of new neutron-rich isotopes

IV. Summary and perspectives

Synthesis of SHE

Ways to synthesize heavy and superheavy elements:

neutron capture:

₉₄Pu---₁₀₀Fm;

□ light ions (¹H, ²H, ³H, He) colliding on target:

heaviest to 101Md

- **u** multi-nucleon transfer (MNT)
- fusion reactions
 - ➤ cold fusion: with ²⁰⁸Pb and ²⁰⁹Bi as target, to ₁₁₃Nh
 - ➢ hot fusion: with ⁴⁸Ca as projectile, to ₁₁₈Og

The synthesized SHE are neutron-deficient and far from the predicted stable SHE island.

existence of longlived SHE island? **MNT** reaction product ²³⁸U fission product

the time for quasifission ~ 10^{-20} s, fusion-fission ~ 10^{-20} ~ 10^{-16} s

Quasifission is the primary mechanism to prevent the formation of superheavy elements.

Fusion probability

- The P_{CN} given by phenomenological model is different by several order;
- \square The P_{CN} can't be measured directly in experiments;
- □ Microscopic model would be better;

Time-dependent Hartree-Fock theory

time-dependent Hartree-Fock (TDHF) theory

$$S = \int_{t_1}^{t_2} \left\langle \Psi(t) \mid H - i\hbar\partial_t \mid \Psi(t) \right\rangle dt, \qquad H = \sum_{i=1}^{A} t_i + \sum_{i
$$\Psi(\mathbf{r}_1, \mathbf{r}_2, \cdots, \mathbf{r}_A, t) = \frac{1}{\sqrt{A!}} \det \left| \varphi_{\lambda}(\mathbf{r}_i, t) \right|, \qquad i\hbar \frac{\partial \varphi_{\lambda}}{\partial t} = h\varphi_{\lambda}$$$$

Advantages:

- Fully microscopic, parameter-free theory in heavy-ion collisions;
- Nuclear structure and reactions in a unified framework (same EDF);
- > Dynamical and quantum effects are automatically incorporated;

Limitations:

- Only one-body dissipation;
- tunneling effect is missing;

TDHF EDF in fusion dynamics

Energy density functional (EDF)

Both time-even and time-odd EDF have been included

$$\begin{aligned} \mathcal{H} &= \mathcal{H}_0 + \sum_{\mathbf{t}=0,1} \left\{ A_{\mathbf{t}}^{\mathbf{s}} \mathbf{s}_{\mathbf{t}}^2 + \left(A_{\mathbf{t}}^{\Delta \mathbf{s}} + B_{\mathbf{t}}^{\Delta \mathbf{s}} \right) \mathbf{s}_{\mathbf{t}} \cdot \Delta \mathbf{s}_t + B_t^{\nabla s} (\nabla \cdot \mathbf{s}_t)^2 \\ &+ (A_t^{\mathrm{T}} + B_t^{\mathrm{T}}) \left(\mathbf{s}_{\mathbf{t}} \cdot \mathbf{T}_{\mathbf{t}} - \sum_{\mu,\nu=x}^z J_{t,\mu\nu} J_{t,\mu\nu} \right) \\ &+ B_t^F \Big[\mathbf{s}_t \cdot \mathbf{F}_t - \frac{1}{2} \Big(\sum_{\mu=x}^z J_{t,\mu\mu} \Big)^2 - \frac{1}{2} \sum_{\mu,\nu=x}^z J_{t,\mu\nu} J_{t,\nu\mu} \Big] \Big\}, \end{aligned}$$

H₀ is basic functional used in Sky3D code and most TDHF calculations

$$\mathcal{H}_{0} = \sum_{t=0,1} \left\{ A_{t}^{\rho} \rho_{t}^{2} + A_{t}^{\Delta \rho} \rho_{t} \Delta \rho_{t} + A_{t}^{\tau} \left(\rho_{t} \tau_{t} - \mathbf{j}_{t}^{2} \right) \right.$$
$$\left. + A_{t}^{\nabla J} \rho_{t} \nabla \cdot \mathbf{J}_{t} + A_{t}^{\nabla J} \mathbf{s}_{t} \cdot \nabla \times \mathbf{j}_{t} \right\}.$$

Quasifission dynamics in experiments

E=186.6 MeV E/B =0.946 E=205.9 MeV E/B =1.044 PHYSICAL REVIEW LETTERS PRL 113, 182502 (2014) 135 θ_{CM} [deg] Interplay between Quantum Shells and Orientation in Quasifission A. Wakhle, C. Simenel, D. J. Hinde, M. Dasgupta, M. Evers, D. H. Luong, R. du Rietz, and E. Williams Department of Nuclear Physics, Research School of Physics and Engineering, Australian National University, Canberra, Australian Capital Territory 2601, Australia 1100 (Received 22 June 2014; revised manuscript received 21 August 2014; published 28 October 2014) 16<L(ax.)<75 $16 \le L(eq.) \le 35$ $20 \le L(ax.) \le 80$ The quasifission mechanism hinders fusion in heavy systems through breakup within zeptoseconds into 200 two fragments with partial mass equilibration. Its dependence on the structure of both the collision partners st 150 100 and the final fragments is a key question. Our original approach is to combine an experimental measurement of the fragments' mass-angle correlations in ${}^{40}Ca + {}^{238}U$ with microscopic quantum 100 calculations. We demonstrate an unexpected interplay between the orientation of the prolate deformed 50 ²³⁸U with quantum shell effects in the fragments. In particular, calculations show that only collisions with the tip of 238 U produce quasifission fragments in the magic Z = 82 region, while collisions with the side are 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.2 0.4 0.6 0.8 the only ones that may result in fusion. MR

 An experiment measure the fragment's mass-angle correlations in ^{40,48}Ca +²³⁸U;
 The studies show an unexpected interplay between the orientation of the prolate deformed ²³⁸U with quantum shell effects.

Quasifission dynamics in experiments

PRL 113, 182502 (2014)

PHYSICAL REVIEW LETTERS

week ending 31 OCTOBER 20

Interplay between Quantum Shells and Orientation in Quasifission

A. Wakhle, C. Simenel,^{*} D. J. Hinde, M. Dasgupta, M. Evers, D. H. Luong, R. du Rietz, and E. Williams Department of Nuclear Physics, Research School of Physics and Engineering, Australian National University, Canberra, Australian Capital Territory 2601, Australia (Received 22 June 2014; revised manuscript received 21 August 2014; published 28 October 2014)

The quasifission mechanism hinders fusion in heavy systems through breakup within zeptoseconds into two fragments with partial mass equilibration. Its dependence on the structure of both the collision partners and the final fragments is a key question. Our original approach is to combine an experimental measurement of the fragments' mass-angle correlations in ${}^{40}\text{Ca} + {}^{238}\text{U}$ with microscopic quantum calculations. We demonstrate an unexpected interplay between the orientation of the prolate deformed ${}^{238}\text{U}$ with quantum shell effects in the fragments. In particular, calculations show that only collisions with the tip of ${}^{238}\text{U}$ produce quasifission fragments in the magic Z = 82 region, while collisions with the side are the only ones that may result in fusion.

An experiment measure the fragment's mass-angle correlations in ^{40,48}Ca +²³⁸U;
 TDHF calculations show that for ⁴⁸Ca projectiles the quasifission is substantially reduced in comparison to the ⁴⁰Ca case. This partly explains the success of superheavy element formation with ⁴⁸Ca beams;

Contents

I. Introduction

- background for SHE and TDHF
- II. Fusion and quasifission dynamics
 - neutron-rich target ⁴⁸Ca+²³⁹Pu and ⁴⁸Ca+²⁴⁴Pu

III. Multi-nucleon transfer reaction

or production of new neutron-rich isotopes

IV. Summary and perspectives

PHYSICAL REVIEW C 69, 054607 (2004)

Measurements of cross sections for the fusion-evaporation reactions 244 Pu(48 Ca,xn) ${}^{292-x}$ 114 and 245 Cm(48 Ca,xn) ${}^{293-x}$ 116

Yu. Ts. Oganessian, V. K. Utyonkov, Yu. V. Lobanov, F. Sh. Abdullin, A. N. Polyakov, I. V. Shirokovsky, Yu. S. Tsyganov, G. G. Gulbekian, S. L. Bogomolov, B. N. Gikal, A. N. Mezentsev, S. Iliev, V. G. Subbotin, A. M. Sukhov, A. A. Voinov, G. V. Buklanov, K. Subotic, V. I. Zagrebaev, and M. G. Itkis *Joint Institute for Nuclear Research, 141980 Dubna, Russian Federation*

J. B. Patin, K. J. Moody, J. F. Wild, M. A. Stoyer, N. J. Stoyer, D. A. Shaughnessy, J. M. Kenneally, and R. W. Lougheed University of California, Lawrence Livermore National Laboratory, Livermore, California 94551, USA (Received 1 December 2003; published 17 May 2004)

PHYSICAL REVIEW C 69, 054607 (2004)

Measurements of cross sections for the fusion-evaporation reactions 244 Pu(48 Ca,xn) ${}^{292-x}$ 114 and 245 Cm(48 Ca,xn) ${}^{293-x}$ 116

Yu. Ts. Oganessian, V. K. Utyonkov, Yu. V. Lobanov, F. Sh. Abdullin, A. N. Polyakov, I. V. Shirokovsky, Yu. S. Tsyganov, G. G. Gulbekian, S. L. Bogomolov, B. N. Gikal, A. N. Mezentsev, S. Iliev, V. G. Subbotin, A. M. Sukhov, A. A. Voinov, G. V. Buklanov, K. Subotic, V. I. Zagrebaev, and M. G. Itkis Joint Institute for Nuclear Research, 141980 Dubna, Russian Federation

PRL 105, 182701 (2010)

PHYSICAL REVIEW LETTERS

week ending 29 OCTOBER 2010

New Superheavy Element Isotopes: ²⁴²Pu(⁴⁸Ca, 5*n*)²⁸⁵114

P. A. Ellison,^{1,2} K. E. Gregorich,² J. S. Berryman,² D. L. Bleuel,³ R. M. Clark,² I. Dragojević,² J. Dvorak,⁴ P. Fallon,²
C. Fineman-Sotomayor,^{1,2} J. M. Gates,² O. R. Gothe,^{1,2} I. Y. Lee,² W. D. Loveland,⁵ J. P. McLaughlin,^{1,2} S. Paschalis,² M. Petri,² J. Qian,² L. Stavsetra,⁶ M. Wiedeking,³ and H. Nitsche^{1,2}
¹Department of Chemistry, University of California, Berkeley, California 94720, USA
²Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

PHYSICAL REVIEW C 69, 054607 (2004)

Measurements of cross sections for the fusion-evaporation reactions 244 Pu(48 Ca,xn) ${}^{292-x}$ 114 and 245 Cm(48 Ca,xn) ${}^{293-x}$ 116

Yu. Ts. Oganessian, V. K. Utyonkov, Yu. V. Lobanov, F. Sh. Abdullin, A. N. Polyakov, I. V. Shirokovsky, Yu. S. Tsyganov,

PRL 105, 182701 (2010) PHYSICAL REVIEW LETTERS

week ending 29 OCTOBER 2010

New Superheavy Element Isotopes: ²⁴²Pu(⁴⁸Ca, 5n)²⁸⁵114

P. A. Ellison,^{1,2} K. E. Gregorich,² J. S. Berryman,² D. L. Bleuel,³ R. M. Clark,² I. Dragojević,² J. Dvorak,⁴ P. Fallon,²
C. Fineman-Sotomayor,^{1,2} J. M. Gates,² O. R. Gothe,^{1,2} I. Y. Lee,² W. D. Loveland,⁵ J. P. McLaughlin,^{1,2} S. Paschalis,² M. Petri,² J. Qian,² L. Stavsetra,⁶ M. Wiedeking,³ and H. Nitsche^{1,2}

PHYSICAL REVIEW C 92, 034609 (2015)

Experiments on the synthesis of superheavy nuclei ²⁸⁴Fl and ²⁸⁵Fl in the ^{239,240}Pu + ⁴⁸Ca reactions

V. K. Utyonkov,^{1,*} N. T. Brewer,² Yu. Ts. Oganessian,¹ K. P. Rykaczewski,² F. Sh. Abdullin,¹ S. N. Dmitriev,¹ R. K. Grzywacz,^{2,3} M. G. Itkis,¹ K. Miernik,^{2,4} A. N. Polyakov,¹ J. B. Roberto,⁵ R. N. Sagaidak,¹ I. V. Shirokovsky,¹ M. V. Shumeiko,¹ Yu. S. Tsyganov,¹ A. A. Voinov,¹ V. G. Subbotin,¹ A. M. Sukhov,¹ A. V. Sabel'nikov,¹ G. K. Vostokin,¹ J. H. Hamilton,⁶ M. A. Stoyer,⁷ and S. Y. Strauss⁸
¹Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, RU-141980 Dubna, Russian Federation ²Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA ³Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA ⁴Faculty of Physics, University of Warsaw, PL-02-093 Warsaw, Poland
⁵Science and Technology Partnerships Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA ⁶Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, USA

PHYSICAL REVIEW C 92, 034609 (2015)

Experiments on the synthesis of superheavy nuclei ²⁸⁴Fl and ²⁸⁵Fl in the ^{239,240}Pu + ⁴⁸Ca reactions

V. K. Utyonkov,^{1,*} N. T. Brewer,² Yu. Ts. Oganessian,¹ K. P. Rykaczewski,² F. Sh. Abdullin,¹ S. N. Dmitriev,¹
R. K. Grzywacz,^{2,3} M. G. Itkis,¹ K. Miernik,^{2,4} A. N. Polyakov,¹ J. B. Roberto,⁵ R. N. Sagaidak,¹ I. V. Shirokovsky,¹
M. V. Shumeiko,¹ Yu. S. Tsyganov,¹ A. A. Voinov,¹ V. G. Subbotin,¹ A. M. Sukhov,¹ A. V. Sabel'nikov,¹ G. K. Vostokin,¹ J. H. Hamilton,⁶ M. A. Stoyer,⁷ and S. Y. Strauss⁸
¹Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, RU-141980 Dubna, Russian Federation
²Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
³Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
⁴Faculty of Physics, University of Warsaw, PL-02-093 Warsaw, Poland
⁵Science and Technology Partnerships Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
⁶Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, USA
⁷Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94551, USA
⁸Department of Physics, University of Notre Dame, Notre Dame, Indiana 46566, USA
(Received 22 July 2015; published 15 September 2015)

Irradiations of ²³⁹Pu and ²⁴⁰Pu targets with ⁴⁸Ca beams aimed at the synthesis of Z = 114 flerovium isotopes were performed at the Dubna Gas Filled Recoil Separator. A new spontaneously fissioning (SF) isotope ²⁸⁴Fl was produced for the first time in the ²⁴⁰Pu + ⁴⁸Ca (250 MeV) and ²³⁹Pu + ⁴⁸Ca (245 MeV) reactions. The cross section of the ²³⁹Pu(⁴⁸Ca, 3n) ²⁸⁴Fl reaction channel was about 20 times lower than predicted by theoretical models and about 50 times lower than the maximum fusion-evaporation cross section for the 3n and 4n channels measured in the ²⁴⁴Pu + ⁴⁸Ca reaction. In the ²⁴⁰Pu + ⁴⁸Ca experiment, performed at 245 MeV in order to maximize the 3n-evaporation channel, three decay chains of ²⁸⁵Fl were detected. The α -decay energy of ²⁸⁵Fl

 $^{48}Ca+^{239}Pu$ with E_{cm}=204.02 MeV, b=2.5 fm

 $^{48}Ca+^{244}Pu$ with E_{cm}=216.76 MeV, b=2.0 fm

⁴⁸Ca+²³⁹Pu

- (1)Collisions with the tip of ²³⁹Pu produce quasifission fragments, while collisions with the side result in fusion:
- (2)contact time decreases as b;
- (3)tip: ₃₂Ge+₈₂Pb
 - side: $_{40}$ Zr+ $_{74}$ W;
- The interplay between quantum shell effect (4)

and orientation of deformed nuclei;

(1) The collision ⁴⁸Ca+²³⁹Puis much easier to happen quasifission than ⁴⁸Ca+²⁴⁴Pu (experiment),

(2) More neutron-rich target nucleus will be helpful in the production of SHE(ANU experiments);

Mass-angle distribution: directly measured by experiments

$$\theta = \theta_{in} + \theta_{TDHF} + \theta_{out}$$

Mass-kinetic distribution: directly measured by experiments

Systematic agreement with the Viola formula; Quasifission dynamics is a fully damped motion;

Contents

- I. Introduction
 - background for SHE and TDHF
- II. Fusion and quasifission dynamics
 - neutron-rich target ⁴⁸Ca+²³⁹Pu and ⁴⁸Ca+²⁴⁴Pu
- **III.** Multi-nucleon transfer reaction
 - production of new neutron-rich isotopes

IV. Summary and perspectives

Multi-nucleon transfer reaction

The experiments via multi-nucleon transfer reaction to produce neutron-rich heavy nuclei

154 Sm + 150 Nd \rightarrow 122

 154 Sm + 154 Sm \rightarrow 124

R.K. Choudhury¹, Y.K. Gupta*

Nuclear Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India

ARTICLE INFO

Article history: Received 29 December 2013 Received in revised form 9 February 2014 Accepted 14 February 2014 Available online 20 February 2014 Editor: V. Metag

Keywords: Super-heavy elements Symmetric reactions

ABSTRACT

Extensive efforts have been made experimentally to reach nuclei in the super-heavy mass region of Z = 110 and above with suitable choices of projectile and target nuclei. The cross sections for production of these nuclei are seen to be in the range of a few picobarn or less, and pose great experimental challenges. Theoretically, there have been extensive calculations for highly asymmetric (hot-fusion) and moderately asymmetric (cold-fusion) collisions and only a few theoretical studies are available for near-symmetric collisions to estimate the cross sections for production of super-heavy nuclei. In the present article, we revisit the symmetric heavy ion reactions with suitable combinations of projectile and target nuclei in the rare-earth region, that will lead to super-heavy nuclei of $Z \ge 120$ with measurable fusion

	Physics Letters B 736 (2014) 478-481	
	Contents lists available at ScienceDirect	PHYSICS LETTERS B
	Physics Letters B	
ELSEVIER	www.elsevier.com/locate/physletb	-

No	chance	for	synthesis	of	super-heavy	nuclei	in	fusion	of	symmetric	
svs	tems										

CrossMark

T. Cap^a, K. Siwek-Wilczyńska^a, J. Wilczyński^{b,*}

^a Faculty of Physics, University of Warsaw, Hoża 69, 681-00 Warsaw, Poland ^b National Centre for Nuclear Research, Hoża 69, 681-00 Warsaw, Poland

ARTICLE INFO

Article history: Received 24 June 2014 Received in revised form 29 July 2014 Accepted 31 July 2014 Available online 7 August 2014 Editor: V. Metag

Keywords: Fusion-by-diffusion model Super-heavy nuclei Symmetric systems

ABSTRACT

Predictions of relatively large cross sections (of about 1 picobarn) for synthesis of super heavy nuclei of Z = 122 and Z = 124 in cold fusion (1n) reactions of symmetric ¹⁵⁴Sm + ¹⁵⁰Nd and ¹⁵⁴Sm + ¹⁵⁴Sm systems by R.K. Choudhury and Y.K. Gupta (2014) [1] are examined. The authors state that this result had been obtained by using the fusion-by-diffusion (FBD) model. As predictions of the original FBD model of Swiatecki, Cap. Siwek-Wilczyńska and Wilczyński had been definitely pessimistic regarding fusion of more symmetric systems (in comparison with equivalent asymmetric systems), we feel compelled to present excitation functions of the ¹⁵⁴Sm(¹⁵⁰Nd, 1n)³⁰³122 and ¹⁵⁴Sm(¹⁵⁴Sm, 1n)³⁰⁷124 reactions, calculated within the original fusion-by-diffusion model. In accordance with our earlier predictions of a general trend of fusion hindrance for near-symmetric systems, the cross sections for synthesis of ³⁰³122 and ³⁰⁷124 nuclides in fusion of these two symmetric systems are found to be extremely small and probably never reachable: about 10⁻¹¹ pb and 10⁻¹³ pb, respectively. It is shown that Choudhury and effect of an arbitrary and physically unjustified interference in the FBD model.

fusion diffusion model

$\sigma \sim 0.6 \text{ pb}$

 $\sigma \sim 10^{-13} \text{ pb}$

Neutron-rich isotopes production

New neutron-rich isotope production via multi-nucleon transfer

Neutron-rich isotopes production

Isotope distribution at different impact parameters

Ning Wang and Lu Guo, Phys. Lett. B760, 236 (2016).

Summary

□ Three-dimensional TDHF with full Skyrme functional and without

any symmetry restrictions;

 \Box The fusion and quasifission dynamics in ⁴⁸Ca+²³⁹Pu and ⁴⁸Ca+²⁴⁴Pu;

Our results qualitatively explains the experimental observations;

□ Multi-nucleon transfer reactions produce the new neutron-rich nuclei;

Summary

□ Three-dimensional TDHF with full Skyrme functional and without

any symmetry restrictions;

 \Box The fusion and quasifission dynamics in ⁴⁸Ca+²³⁹Pu and ⁴⁸Ca+²⁴⁴Pu;

Our results qualitatively explains the experimental observations;

□ Multi-nucleon transfer reactions produce the new neutron-rich nuclei;

Thank you for your attention!

Quantum Molecular Dynamics Model

Quantum Molecular dynamics (QMD)

Advantages

- Microscopic theory in heavy-ion collisions;
- Both mean field and collision terms inlcuded;

Limitations

- Pauli principle
- Shell effects
- antisymmetrization of wave functions

