

Properties of nuclear masses for heavy and neutron-rich nuclei

Hiroyuki KOURA(小浦寬之)

Advanced Science Research Center Japan Atomic Energy Agency (JAEA)

I. Introduction

- II. Bulk properties of nuclear masses
- III. Nuclear mass formulae
- **IV.** Application to r-process
 - i) Mass-model dependency
 - ii) Effect of fission
- V. Recent study on beta-decay
- VI.Summary

II. Bulk properties of nuclear mass

Weizsäcker-Bethe semi-empirical atomic mass formula

Shape transition and shell energies

- Experiment -

Notable feature on discontinuity of derivative of mass values

• Z=50, N=82 and Z=82 discontinuity of derivative: Spherical single-particle shell closure

• N=88-90 discontinuity: Shape transition

140

120

100

80

╈

Ν

+

≈ 0

N=79

+

Ζ

Z=82

larger

Trend in 100 keV-order

KTUY mass model

KUTY (KTUY) mass formula (Koura, Uno, Tachibana, Yamada (00,05)

 $M(Z, N) = M_{\text{gross}}(Z, N) + M_{\text{eo}}(Z, N) + M_{\text{shell}}(Z, N)$

H. K, et al., Nucl. Phys. A **674**, 47 (2000) H. K, et al., Prog. Theor. Phys. **113**, 305 (2005)

$$\begin{split} M_{\text{gross}}(Z,N) = M_{\text{H}}Z + M_{\text{n}}N + a(A)A + b(A) \left| N - Z \right| + c(A)(N - Z)^{2}/A + E_{\text{C}}(Z,N) - k_{\text{el}}Z^{2.39} \\ a(A) = a_{1} + a_{2}A^{-1/3} + a_{3}A^{-2/3} + a_{4}(A + \alpha_{a})^{-1} \\ b(A) = & +b_{4}(A + \alpha_{b})^{-1} \\ c(A) = c_{1} + c_{2}A^{-1/3} + c_{3}A^{-2/3} + c_{4}(A + \alpha_{c})^{-1} \end{split}$$

M_{shell}(Z,N): shell term

Spherical nuclei

Calculated from <u>Spherical single-particle potential</u> for any nuclei (includes the BCS paring, reduction)

Deformed nuclei (Spherical-basis condieration)

Obtained by <u>an appropriate mixture</u> of the above spherical shell energies + liquid-drop deform. energies

KUTY mass formula (Koura, Uno, Tachibana, Yamada (2000)) $M(Z, N) = M_{gross}(Z, N) + M_{eo}(Z, N) + M_{shell}(Z, N)$ • $M_{shell}(Z, N)$: shell term

H. K. and M. Yamada, Nucl. Phys. A 671, 96 (2000)

Spherical nuclei

calculated from **Spherical single-particle potential**

for any nuclei (includes the BCS paring, reduction)

$$V_{\text{cen}}(r) = V_0 \frac{1}{\left\{1 + \exp\left[\left(r - R_v\right)/a_v\right]\right\}^{a_v/\kappa}} \left\{1 + V_{\text{dp}} \frac{1}{1 + \exp\left[-\left(r - R_v\right)/a_v\right]}\right\}$$
(Central component)

Nuclear shell energy with deformation

(Spherical-basis consideration)

H. K, et al., Nucl. Phys. A 674, 47 (2000)

Nuclear shell energy of KUTY

Nuclear shell energies $E_{sh}(Z, N)$

Other mass models and comparison

Skyrme-Hartree-Fock-Bogoliubov mass formula (2002-)

by S. Goriely et al.

$E_{\text{tot}} = E_{\text{HFB+}} E_{\text{wigner}}$

BSk21 force parameter set:

 t_0 =-3961.39 MeV fm³, t_1 =396.131 MeV fm⁵ $t_2=0 \text{ MeV fm}^5$, $t_3=22588.2 \text{ MeV fm}^{3+3}\alpha$ t_4 =-100.000 MeV fm⁵⁺³ β , t_5 =-150.000 MeV fm⁵⁺³ γ x₀=0.885231, x₁=-0.0648452, t₂x₂=1390.38 MeV fm⁵ $x_3=1.03928, x_4=2.00000, x_5=-11.0000$ W₀=109.622 MeV fm⁵, α =1/12, β =1/2, γ =1/12 f⁺_n=1.00, f⁺_p=1.07, f⁻_n=1.05, f_p=1.13 V_W =-1.80 MeV, λ =280, V'_W =0.96, A_0 =24

		<u>Accuracy</u>	
The long road	l in the HFB mass model development	$\sigma_{\rm rms}$ (2149 n	uc)
HFB-2 :	Possible to fit all 2149 exp masses Z≥8	659 keV	
HFB-3:	Volume versus surface pairing	635 keV	
HFB-4-5:	Nuclear matter EoS: M [*] _s =0.92	660 keV	
HFB-6-7:	Nuclear matter EoS: M [*] _s =0.80	657 keV	
HFB-8:	Particle-number projection	635 keV	¥
HFB-9:	Neutron matter EoS	733 keV	1
HFB-10-13:	Low pairing & NLD	717 keV	
HFB-14:	Collective correction and Fission B _f	729 keV	1
HFB-15:	Coulomb correlations / CSB	678 keV	1
HFB-16:	Pairing constrained to NM	632 keV	

HFB21 gives a less than 600 keV of the RMS dev. In the light region there is some discrepancy in derivatives as S_n.

Referred mass data:AME03

G-K sys. check for HFB formulae

14

HFB2(2002)

AME11(exp)

Extrapolation to the n-rich nuclei

• In old-type mass formulae (-1988), mass values extremely

diverge in the very neutron-rich region

Extrapolation to the n-rich nuclei

Mass-model dependency

-Check the mass formulae as astrophysical data-

S_{2n} systematics

Effect of fission

Neutron-induced fission and β-delayed fission

Nuclear masses and fission barrier: KTUY (Koura-Tachibana-Uno-Yamada) mass formula

Time evolution of the r- process

Results

H. K. and S. Chiba, PRC 95 064304 (2017)

- A short review of systematical properties of experimental nuclear masses is given.
 - Mass-systematics like G-K is a good tool to check mass values.
- Some mass formulae are reviewed and compared:
 - Old-parametrized mass formulae (in 1976, 1988) generally fail to extrapolation.
 - HFB-type mass formulae give anomaly on GK-sys.
- A mass-model dependency to the r-process is discussed.
- Fission cycle would affect the r-process abundance.