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PGAS - Overview

 PGAS

– Data is distributed over units
– Global data structures know its layoutDASH

 DASH

– C++ library similar to UPC++
– Implements PGAS approach
– Provides distributed data structures and algorithms
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DASH - Partitioned Global Address Space

 Data affinity

– data has well-defined owner but can be accessed by any unit
– data locality important for performance
– support for the owner computes execution model

 DASH:

– unified access to
local and remote
data in global
memory space
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DASH - Partitioned Global Address Space

 Data affinity

– data has well-defined owner but can be accessed by any unit
– data locality important for performance
– support for the owner computes execution model

 DASH:

– unified access to
local and remote
data in global
memory space

– and explicit views
on local memory
space
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IO Abstraction Basics

 Why IO abstraction necessary

– IO is often boilerplate
– Parallel IO is tricky
– Re-implementation of IO part in each application

 Abstraction idea

– Import / export distributed data structures
– various targets (HDF5, NetCDF, Image, …)
– Conversion ?
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Design Goals

 Support portable, common data formats

 Implementation is portable (GPFS, NFS, …)

 Minimal overhead

 Scalable

 Simple interface
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IO Abstraction Concept

 Similar to POSIX pipes

 Source → IO Adapter → Sink

 Collective operation

File
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IO Abstraction Concept

 Similar to POSIX pipes

 Source → IO Adapter → Sink

 Collective Operation

File
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IO Adapter Basics

 Configuration using stream modifiers e.g.

– dataset
– store pattern
– restore pattern
– ...

 Good defaults

 IO Team is derived
from container

 Automatic type conversion (trivial types)

 User can pass custom type mapping function as lambda
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IO Abstraction Model

Data Container

Data

Pattern

Team
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Reference Implementation

 DASH: distributed datastructures

 HDF5

– portable data format
– Independent of OS / Arch.
– Self-describing format
– Organized as a tree

 Dataset consists of

– Tables
– Metadata
– Attributes

/

g1 temperatur

medians mins

Use h5dump < file > to discover



Tokyo, April,6 2017 | 12SPPEXA Workshop Japan 2017 

HDF5 Sample File
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 Container knows
distribution

 Data is continuous
memory 

 Data domain is hyper-
rectangle

– N-Dim rectangle
– Sample: 2 dim
– Propably underfilled

blocks

Implementation Aspects - Datastructure
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IO Adapter – Pattern Converter

 IO Subtask

– Has to be executed collectively
– Size of contribution might differ
– Order of tasks irrelevant for correctness
– No underfilled blocks
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Scheduler Optimization

 Order tasks by local contribution

 Drop all-empty tasks
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IO Adapter – Async IO (1)

 Observations

– IO tasks are long-running
– IO libs internally use MPI2-IO / ROMIO
– No support for non-blocking IO

 Solution

– Use MPI multithreading
– Create IO tasks as threads
– Works for versions >= MPI2

 Problem

– Simultaneous IO tasks are horribly slow
– Buggy in some MPI versions (e.g. mpich)
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IO Adapter – Async IO (2)

 Simultaneous tasks are chained internally

 Sync / async selection via launch-policies

 Example:

Launch policy
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Compatible Patterns

 Each pattern has tags

– Layout (blocked, row_major, ...)
– Mapping (balanced, shifted, …)
– Partitioning (balanced, regular, …)

 Checked using type traits at compile time

– Zero overhead at runtime

 At runtime using exceptions

– Important for reading data
– Not all pattern support underfilled blocks
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Performance Evaluation

 Minimal overhead (in pattern conversion)

 zero-copy of data

 Performance depends on FS

 Large tiles are better

 SuperMUC Intelmpi, HDF5 on GPFS

– Read: 1.2 GB/s per node 
– Write: 0.8 GB/s per node

without FS tuning,
300 MB per process
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Sample Application

 All-Pairs latency
benchmark

– Measures n-to-n latency
multiple times

– Data is stored in Narray
 Post Processing

– Import HDF5 data in R
– Analyze and Plot

SuperMUC II, 20 Nodes
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On-going and Future Work

 Subsetting Data Structures

 Adios Bindings

– Instant support of various IO backends
– Converter DASH Pattern → Adios Pattern

 DASH Coarray (Similar to CAF 2008)

– Fulfills the Narray container concept → IO works out of the box
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Summary

 IO Abstraction

– Independent of data and grid layout
– Easy to use, but fast
– No special target FS

 Use cases

– Import and export data
– Checkpointing

 Reference Implementation part of DASH
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