
A Parallel I/O Abstraction for Partitioned Global
Address Space Programming

www.dash-project.org

Felix Mößbauer
felix.moessbauer@campus.lmu.de
Ludwig-Maximilians-Universität München



Tokyo, April,6 2017 | 2SPPEXA Workshop Japan 2017 

PGAS - Overview

 PGAS

– Data is distributed over units
– Global data structures know its layoutDASH

 DASH

– C++ library similar to UPC++
– Implements PGAS approach
– Provides distributed data structures and algorithms



Tokyo, April,6 2017 | 3SPPEXA Workshop Japan 2017 

DASH - Partitioned Global Address Space

 Data affinity

– data has well-defined owner but can be accessed by any unit
– data locality important for performance
– support for the owner computes execution model

 DASH:

– unified access to
local and remote
data in global
memory space



Tokyo, April,6 2017 | 4SPPEXA Workshop Japan 2017 

DASH - Partitioned Global Address Space

 Data affinity

– data has well-defined owner but can be accessed by any unit
– data locality important for performance
– support for the owner computes execution model

 DASH:

– unified access to
local and remote
data in global
memory space

– and explicit views
on local memory
space



Tokyo, April,6 2017 | 5SPPEXA Workshop Japan 2017 

IO Abstraction Basics

 Why IO abstraction necessary

– IO is often boilerplate
– Parallel IO is tricky
– Re-implementation of IO part in each application

 Abstraction idea

– Import / export distributed data structures
– various targets (HDF5, NetCDF, Image, …)
– Conversion ?



Tokyo, April,6 2017 | 6SPPEXA Workshop Japan 2017 

Design Goals

 Support portable, common data formats

 Implementation is portable (GPFS, NFS, …)

 Minimal overhead

 Scalable

 Simple interface

C
od

e:
 H

D
F5

 E
xa

m
pl

e
H

yp
er

sl
ab

_b
y_

ch
un

k.
c

does not scale

not simple at all



Tokyo, April,6 2017 | 7SPPEXA Workshop Japan 2017 

IO Abstraction Concept

 Similar to POSIX pipes

 Source → IO Adapter → Sink

 Collective operation

File



Tokyo, April,6 2017 | 8SPPEXA Workshop Japan 2017 

IO Abstraction Concept

 Similar to POSIX pipes

 Source → IO Adapter → Sink

 Collective Operation

File



Tokyo, April,6 2017 | 9SPPEXA Workshop Japan 2017 

IO Adapter Basics

 Configuration using stream modifiers e.g.

– dataset
– store pattern
– restore pattern
– ...

 Good defaults

 IO Team is derived
from container

 Automatic type conversion (trivial types)

 User can pass custom type mapping function as lambda



Tokyo, April,6 2017 | 10SPPEXA Workshop Japan 2017 

IO Abstraction Model

Data Container

Data

Pattern

Team

IO Adapter

Pattern Converter

IO Task Optimizer

IO Backend (e.g. HDF5)

File Preparation

Data Writer

Metadata Aggr.

La
un

ch
er

File

native pointer – zero copy



Tokyo, April,6 2017 | 11SPPEXA Workshop Japan 2017 

Reference Implementation

 DASH: distributed datastructures

 HDF5

– portable data format
– Independent of OS / Arch.
– Self-describing format
– Organized as a tree

 Dataset consists of

– Tables
– Metadata
– Attributes

/

g1 temperatur

medians mins

Use h5dump < file > to discover



Tokyo, April,6 2017 | 12SPPEXA Workshop Japan 2017 

HDF5 Sample File



Tokyo, April,6 2017 | 13SPPEXA Workshop Japan 2017 

 Container knows
distribution

 Data is continuous
memory 

 Data domain is hyper-
rectangle

– N-Dim rectangle
– Sample: 2 dim
– Propably underfilled

blocks

Implementation Aspects - Datastructure

Dimension 1

D
im

en
si

on
 0

Unit 0
Unit 1
Unit 2
Unit 3

24 x 18, Tile(5 x 4)



Tokyo, April,6 2017 | 14SPPEXA Workshop Japan 2017 

IO Adapter – Pattern Converter

 IO Subtask

– Has to be executed collectively
– Size of contribution might differ
– Order of tasks irrelevant for correctness
– No underfilled blocks

extent dim 1

ex
te

n
t d

im
 0

fully filled part

fully filled
 pa

rt

Local memory layout (yellow
unit)2D worst case



Tokyo, April,6 2017 | 15SPPEXA Workshop Japan 2017 

Scheduler Optimization

 Order tasks by local contribution

 Drop all-empty tasks

Unit 0

Unit 1

Unit 2

Unit 3

Task 1 Task 2 Task 3 Task 4

Time

Unit 0

Unit 1

Unit 2

Unit 3

Task 1 2 3 4

Time

Unit 0

Unit 1

Unit 2

Unit 3

Task 1

Time

Dimension 1

D
im

en
si

on
 0

Unit 0 Unit 1

Unit 2 Unit 3

1

2

3

4



Tokyo, April,6 2017 | 16SPPEXA Workshop Japan 2017 

IO Adapter – Async IO (1)

 Observations

– IO tasks are long-running
– IO libs internally use MPI2-IO / ROMIO
– No support for non-blocking IO

 Solution

– Use MPI multithreading
– Create IO tasks as threads
– Works for versions >= MPI2

 Problem

– Simultaneous IO tasks are horribly slow
– Buggy in some MPI versions (e.g. mpich)



Tokyo, April,6 2017 | 17SPPEXA Workshop Japan 2017 

IO Adapter – Async IO (2)

 Simultaneous tasks are chained internally

 Sync / async selection via launch-policies

 Example:

Launch policy



Tokyo, April,6 2017 | 18SPPEXA Workshop Japan 2017 

Compatible Patterns

 Each pattern has tags

– Layout (blocked, row_major, ...)
– Mapping (balanced, shifted, …)
– Partitioning (balanced, regular, …)

 Checked using type traits at compile time

– Zero overhead at runtime

 At runtime using exceptions

– Important for reading data
– Not all pattern support underfilled blocks



Tokyo, April,6 2017 | 19SPPEXA Workshop Japan 2017 

Performance Evaluation

 Minimal overhead (in pattern conversion)

 zero-copy of data

 Performance depends on FS

 Large tiles are better

 SuperMUC Intelmpi, HDF5 on GPFS

– Read: 1.2 GB/s per node 
– Write: 0.8 GB/s per node

without FS tuning,
300 MB per process



Tokyo, April,6 2017 | 20SPPEXA Workshop Japan 2017 

Sample Application

 All-Pairs latency
benchmark

– Measures n-to-n latency
multiple times

– Data is stored in Narray
 Post Processing

– Import HDF5 data in R
– Analyze and Plot

SuperMUC II, 20 Nodes



Tokyo, April,6 2017 | 21SPPEXA Workshop Japan 2017 

On-going and Future Work

 Subsetting Data Structures

 Adios Bindings

– Instant support of various IO backends
– Converter DASH Pattern → Adios Pattern

 DASH Coarray (Similar to CAF 2008)

– Fulfills the Narray container concept → IO works out of the box



Tokyo, April,6 2017 | 22SPPEXA Workshop Japan 2017 

Summary

 IO Abstraction

– Independent of data and grid layout
– Easy to use, but fast
– No special target FS

 Use cases

– Import and export data
– Checkpointing

 Reference Implementation part of DASH



Tokyo, April,6 2017 | 23SPPEXA Workshop Japan 2017 

Acknowledgements

 Funding

 The DASH Team
T. Fuchs (LMU), R. Kowalewski (LMU), D. Hünich (TUD), A. Knüpfer
(TUD), J. Gracia (HLRS), C. Glass (HLRS), H. Zhou (HLRS), K. Idrees
(HLRS), J. Schuchart (HLRS), F. Mößbauer (LMU), K. Fürlinger (LMU)

DASH on GitHub:
https://github.com/dash-project/dash

IO stuff part of release 0.3.0

https://github.com/dash-project/dash

	DASH: A C++ PGAS Library for Distributed Data Structures and Parallel Algorithms
	DASH - Overview
	DASH - Partitioned Global Address Space
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Summary
	Acknowledgements

