
A Parallel I/O Abstraction for Partitioned Global
Address Space Programming

www.dash-project.org

Felix Mößbauer
felix.moessbauer@campus.lmu.de
Ludwig-Maximilians-Universität München



Tokyo, April,6 2017 | 2SPPEXA Workshop Japan 2017 

PGAS - Overview

 PGAS

– Data is distributed over units
– Global data structures know its layoutDASH

 DASH

– C++ library similar to UPC++
– Implements PGAS approach
– Provides distributed data structures and algorithms



Tokyo, April,6 2017 | 3SPPEXA Workshop Japan 2017 

DASH - Partitioned Global Address Space

 Data affinity

– data has well-defined owner but can be accessed by any unit
– data locality important for performance
– support for the owner computes execution model

 DASH:

– unified access to
local and remote
data in global
memory space



Tokyo, April,6 2017 | 4SPPEXA Workshop Japan 2017 

DASH - Partitioned Global Address Space

 Data affinity

– data has well-defined owner but can be accessed by any unit
– data locality important for performance
– support for the owner computes execution model

 DASH:

– unified access to
local and remote
data in global
memory space

– and explicit views
on local memory
space



Tokyo, April,6 2017 | 5SPPEXA Workshop Japan 2017 

IO Abstraction Basics

 Why IO abstraction necessary

– IO is often boilerplate
– Parallel IO is tricky
– Re-implementation of IO part in each application

 Abstraction idea

– Import / export distributed data structures
– various targets (HDF5, NetCDF, Image, …)
– Conversion ?



Tokyo, April,6 2017 | 6SPPEXA Workshop Japan 2017 

Design Goals

 Support portable, common data formats

 Implementation is portable (GPFS, NFS, …)

 Minimal overhead

 Scalable

 Simple interface

C
od

e:
 H

D
F5

 E
xa

m
pl

e
H

yp
er

sl
ab

_b
y_

ch
un

k.
c

does not scale

not simple at all



Tokyo, April,6 2017 | 7SPPEXA Workshop Japan 2017 

IO Abstraction Concept

 Similar to POSIX pipes

 Source → IO Adapter → Sink

 Collective operation

File



Tokyo, April,6 2017 | 8SPPEXA Workshop Japan 2017 

IO Abstraction Concept

 Similar to POSIX pipes

 Source → IO Adapter → Sink

 Collective Operation

File



Tokyo, April,6 2017 | 9SPPEXA Workshop Japan 2017 

IO Adapter Basics

 Configuration using stream modifiers e.g.

– dataset
– store pattern
– restore pattern
– ...

 Good defaults

 IO Team is derived
from container

 Automatic type conversion (trivial types)

 User can pass custom type mapping function as lambda



Tokyo, April,6 2017 | 10SPPEXA Workshop Japan 2017 

IO Abstraction Model

Data Container

Data

Pattern

Team

IO Adapter

Pattern Converter

IO Task Optimizer

IO Backend (e.g. HDF5)

File Preparation

Data Writer

Metadata Aggr.

La
un

ch
er

File

native pointer – zero copy



Tokyo, April,6 2017 | 11SPPEXA Workshop Japan 2017 

Reference Implementation

 DASH: distributed datastructures

 HDF5

– portable data format
– Independent of OS / Arch.
– Self-describing format
– Organized as a tree

 Dataset consists of

– Tables
– Metadata
– Attributes

/

g1 temperatur

medians mins

Use h5dump < file > to discover



Tokyo, April,6 2017 | 12SPPEXA Workshop Japan 2017 

HDF5 Sample File



Tokyo, April,6 2017 | 13SPPEXA Workshop Japan 2017 

 Container knows
distribution

 Data is continuous
memory 

 Data domain is hyper-
rectangle

– N-Dim rectangle
– Sample: 2 dim
– Propably underfilled

blocks

Implementation Aspects - Datastructure

Dimension 1

D
im

en
si

on
 0

Unit 0
Unit 1
Unit 2
Unit 3

24 x 18, Tile(5 x 4)



Tokyo, April,6 2017 | 14SPPEXA Workshop Japan 2017 

IO Adapter – Pattern Converter

 IO Subtask

– Has to be executed collectively
– Size of contribution might differ
– Order of tasks irrelevant for correctness
– No underfilled blocks

extent dim 1

ex
te

n
t d

im
 0

fully filled part

fully filled
 pa

rt

Local memory layout (yellow
unit)2D worst case



Tokyo, April,6 2017 | 15SPPEXA Workshop Japan 2017 

Scheduler Optimization

 Order tasks by local contribution

 Drop all-empty tasks

Unit 0

Unit 1

Unit 2

Unit 3

Task 1 Task 2 Task 3 Task 4

Time

Unit 0

Unit 1

Unit 2

Unit 3

Task 1 2 3 4

Time

Unit 0

Unit 1

Unit 2

Unit 3

Task 1

Time

Dimension 1

D
im

en
si

on
 0

Unit 0 Unit 1

Unit 2 Unit 3

1

2

3

4



Tokyo, April,6 2017 | 16SPPEXA Workshop Japan 2017 

IO Adapter – Async IO (1)

 Observations

– IO tasks are long-running
– IO libs internally use MPI2-IO / ROMIO
– No support for non-blocking IO

 Solution

– Use MPI multithreading
– Create IO tasks as threads
– Works for versions >= MPI2

 Problem

– Simultaneous IO tasks are horribly slow
– Buggy in some MPI versions (e.g. mpich)



Tokyo, April,6 2017 | 17SPPEXA Workshop Japan 2017 

IO Adapter – Async IO (2)

 Simultaneous tasks are chained internally

 Sync / async selection via launch-policies

 Example:

Launch policy



Tokyo, April,6 2017 | 18SPPEXA Workshop Japan 2017 

Compatible Patterns

 Each pattern has tags

– Layout (blocked, row_major, ...)
– Mapping (balanced, shifted, …)
– Partitioning (balanced, regular, …)

 Checked using type traits at compile time

– Zero overhead at runtime

 At runtime using exceptions

– Important for reading data
– Not all pattern support underfilled blocks



Tokyo, April,6 2017 | 19SPPEXA Workshop Japan 2017 

Performance Evaluation

 Minimal overhead (in pattern conversion)

 zero-copy of data

 Performance depends on FS

 Large tiles are better

 SuperMUC Intelmpi, HDF5 on GPFS

– Read: 1.2 GB/s per node 
– Write: 0.8 GB/s per node

without FS tuning,
300 MB per process



Tokyo, April,6 2017 | 20SPPEXA Workshop Japan 2017 

Sample Application

 All-Pairs latency
benchmark

– Measures n-to-n latency
multiple times

– Data is stored in Narray
 Post Processing

– Import HDF5 data in R
– Analyze and Plot

SuperMUC II, 20 Nodes



Tokyo, April,6 2017 | 21SPPEXA Workshop Japan 2017 

On-going and Future Work

 Subsetting Data Structures

 Adios Bindings

– Instant support of various IO backends
– Converter DASH Pattern → Adios Pattern

 DASH Coarray (Similar to CAF 2008)

– Fulfills the Narray container concept → IO works out of the box



Tokyo, April,6 2017 | 22SPPEXA Workshop Japan 2017 

Summary

 IO Abstraction

– Independent of data and grid layout
– Easy to use, but fast
– No special target FS

 Use cases

– Import and export data
– Checkpointing

 Reference Implementation part of DASH



Tokyo, April,6 2017 | 23SPPEXA Workshop Japan 2017 

Acknowledgements

 Funding

 The DASH Team
T. Fuchs (LMU), R. Kowalewski (LMU), D. Hünich (TUD), A. Knüpfer
(TUD), J. Gracia (HLRS), C. Glass (HLRS), H. Zhou (HLRS), K. Idrees
(HLRS), J. Schuchart (HLRS), F. Mößbauer (LMU), K. Fürlinger (LMU)

DASH on GitHub:
https://github.com/dash-project/dash

IO stuff part of release 0.3.0

https://github.com/dash-project/dash

	DASH: A C++ PGAS Library for Distributed Data Structures and Parallel Algorithms
	DASH - Overview
	DASH - Partitioned Global Address Space
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Summary
	Acknowledgements

