
ERLANGEN REGIONAL

COMPUTING CENTER

Faisal Shahzad

CRAFT: A library for

application-level Checkpoint/Restart

Automatic Fault Tolerance

06.04.17

ESSEX
Equipping sparse solvers for Exascale

2

Challenge

 Nowadays, the increasing computational capacity is mainly due to extreme

level of hardware parallelism.

 The reliability of the hardware components do not increase with the similar

rate.

 At exascale-level, the Mean Time To Failure (MTTF) is expected to reduce to

the order of hours or minutes.

 e.g.:

 ‚Intrepid‘, BlueGene/P, debuted # 4 on top 500, june 08: MTTF 7.5 days1

 ‚Sequoia‘, BlueGene/Q, debuted # 3 on top 500, Nov. 13: MTTF 19 hrs2

 The absence of fault tolerant environment will put the precious data at risk.

1) Dongarra J (2013) Emerging Heterogeneous Technologies for High Performance Computing. http://www.netlib.org/utk/people/JackDongarra/SLIDES/hcw-0513.pdf.

2) M Snir et al (2014) Addressing failures in exascale computing. International Journal of High Performance Computing Applications.

http://www.netlib.org/utk/people/JackDongarra/SLIDES/hcw-0513.pdf
http://www.netlib.org/utk/people/JackDongarra/SLIDES/hcw-0513.pdf
http://www.netlib.org/utk/people/JackDongarra/SLIDES/hcw-0513.pdf
http://www.netlib.org/utk/people/JackDongarra/SLIDES/hcw-0513.pdf
http://www.netlib.org/utk/people/JackDongarra/SLIDES/hcw-0513.pdf

3

CRAFT Introduction:

1. Checkpoint/restart(CR):

 Target: A simple and extendable library tool for creating „Application-

level checkpoints“ with minimal code modifications.

 Default checkpointable data types: i) PODs(int, double etc.) ii) POD

arrays iii) POD multiarrays

 Extendable --> to include more data-types.

 Takes care of checkpoint management issues (e.g. restart checkpoint

version).

 Optimizations:

i. Supports SCR-library (LLNL) for neighbor level C/R.

ii. MPI-IO for PFS-level checkpoints.

 Enables: i) Multi-level checkpoint ii) nested checkpoints.

2. Automatic fault tolerance (AFT):

 Dynamic process failure recovery in case of processor failures*

 * Terms and conditions apply

4

CR: Toy example

 A toy-code without(left) and with CRAFT application-level CR functions (right).

Checkpoint: A collection of data objects of checkpointable types.

Checkpointable data-type: A data-type that is recognized by add() function of CRAFT.

5

CR: CRAFT Interface(I)

 Checkpoint::add(…)

• Default CRAFT checkpointable data types include:

i. Plain Old Data(int, double, float, etc.)

 cp.add („myfloat“, &myfloat);

ii. POD arrays:

 cp.add („myint“, &myint, arraySize);

iii. POD multiarrays:

 cp.add („mydbl“, &mydbl, nRows, nCols, toCpCol);

 toCpCol: Column to checkpoint.ALL(default), CYCLIC, An Integer.

 New data types (User-extension): Arguments depend on the data type.

6

CR: CRAFT Interface(II)

 Checkpoint::update()

• Update the asynchronous copy of data.

 Checkpoint::write()

• Iterates through all objects in std::map and updates calles their

corresponding write() function, e.g. cpPOD.write() etc.

 Checkpoint::read()

 Checkpoint::needRestart()

• Checks if there there exist already a copy of the defined checkpoint

in the filesystem.

7

CR: CRAFT design flow

1. Checkpointable class

2. addCpType(…): Instentiates & adds to cpMap.

8

CR: CRAFT extension example(I)

 Extending CRAFT for any arbitrary data-type following 2 steps.

1. Implementing a “Checkpointable class”, derived from CpBase, and

implementing the read(), write(), and update() functions along with

constructor and destructor for the corresponding data type.

2. Implementing a function addCpType(Checkpoint * cp, ...) in

include/addedCpTypes.hpp that instantiates a new object of the above

defined class and adds to the ‘cpMap’. The structure of this function can be

seen in include/addedCpTypes.hpp.

 For example, let us consider the following data type.

9

CR: CRAFT extension example(II)

 Step 1:

 Step 2:

10

CR: CRAFT extension example(III)

 Application usage after CRAFT extention for ‚rectDomain‘ data-type:

11

CR: Optimizations

 Scalable Checkpoint/Restart (SCR) Library support* (developed by LLNL)

i. Enables node-level & neighbor node-level CR.

ii. Less frequent PFS-level checkpoints.

 SCR Limitations

i. Only one Checkpoint instance can be created. (no multi-level &

nested checkpoints).

ii. Each process must write its own checkpoint file independently.

 MPI-IO can be used for all default-supported data-types for PFS-level

checkpoint. (without SCR).

* Terms and conditions apply

12

CR: Directory structure

 Each Checkpoint object maintains and

updates its own directroy.

 The directory structure of all checkpoints is

flat, i.e, no nested checkpoints.

 Each checkpoints keeps the value of latest

valid checkpoint in ‚metadata.ckpt‘.

13

CR: Multi-layered checkpoints

CL1
CL2

CL3

- „CL1“ and „CL2“ form a

nested structure of

checkpoints.

- All initializations of

nested Checkpoints

must be done only once.

14

CR: hybrid PFS/node-level CRAFT Checkpoints

 High frequency CPs => node-level via SCR

 Low frequency CPs => PFS.

• CRAFT compiled with SCR.

• SCR can be disabled for any

particular Checkpoint object.

• Disabled SCR-checkpoints

are stored at PFS

 In multi-level checkpoint

environment, only one

checkpoint can be stored

using SCR.

15

Automatic fault tolerant (AFT):

 AFT: Dynamic process(es) recovery in case of process failure(s).

1. A fault tolerant communication (avoids deadlocks in case of

failed processes)

 ULFM-MPI

 Error handler / MPI call return value

 Error propagation via MPI_Comm_revoke()

2. Communication recovery

 Shrinking/Spawning

3. Data recovery

 Easy option: Checkpoint/Restart

 Algorithm Based Fault Tolerance

16

Automatic fault tolerance(AFT):

 An ‚AFT-zone‘ is created between

AFT_BEGIN() and AFT_END()

region.

 The process failures (of the given

communicator) within the AFT-

zone are recovered dynamically.

 Communicator Recovery options:

1. Shrinking

2. Non-shrinking

A
F

T
-z

o
n
e

17

Introduction to ULFM* (I)

 The User Level Failure Mitigation (ULFM) proposal is developed by

MPI-Forum‘s Fault Tolerance Working Group.

 Target: To provide a simple, flexible and deadlock-free API that helps

users to recover from failed communications due to process-failure.

 This is NOT an application recovery API.

 Once the communication is restored, the data recovery is user‘s

responsibility.

 Implemented as an mpi-extension on top of Open MPI implementation

 Early stage implementation: to test correctness, not performance.

* http://fault-tolerance.org/

18

Introduction to ULFM (II)

 Error handler on working communicator:

 MPI_ERRORS_RETURN

 User defined error handler

 MPIX_Comm_revoke(MPI_Comm comm);

 MPIX_Comm_shrink(MPI_Comm old_comm, MPI_Comm * new_comm);

 MPIX_Comm_agree(MPI_Comm comm, int * flag);

 MPI_Comm_spawn(… numproc_spawn, spawn_info, &icomm …);

 Merging intercomm to give an interacomm + reordering ranks to give

spawned process same rank as dead-rank.

 MPI_Intercomm_merge()

 MPI_Group_translate_ranks()

Image courtesy: http://meetings.mpi-forum.org/2014-11-scbof-ft.pdf

19

AFT: AFT-zone

A
F

T
-z

o
n
e

20

AFT: AFT-zone

AFT_END

First run: duplication of MPI_COMM_WORLD is

created and errhandler is assigned to new comm.

In case of Failure: errhandler revokes the

comm_working.

Spawned + surviving procs.

After app_needs_repair() call, the

spawned process is merged into

‚comm_working‘ and it has the same

rank as dead processs.

- ‚try-catch‘ block in a ‚do-while‘ loop.

- ‚do-while‘ loop runs untill try block is run

successfully

A
F

T
_

B
E

G
IN

21

Automatic fault tolerant (AFT): Process recovery

CRAFT comm. recovery

Data recovery

(application-

dependent)

AFT_Begin(FT_Comm)

P0

P1

P2

P3

Spawned

P2

AFT_END()

22

AFT: Communication recovery options

 Shrinking

 Non-shrinking

Pros Cons

o Domain may need redistribution for effective

resource utilization.

o For domain redis., one checkpoint for whole job

=> no SCR.

 No extra resources (nodes) needed

Pros Cons

o If new nodes are used for spawned procs.,

preallocation of extra nodes is necessary.
 If procs. are spawned at same node,

no extra resources needed.

 No redistribution of domain.

23

CRAFT Parameters:

Table 1: The CRAFT parameters description. Note: 1=enable, 0=disable

24

CRAFT Benchmarks: comm. recovery scaling

25

CRAFT Benchmarks: spawn + merge comparison

 A scaling comparison of spawn and merge routines for Intelmpi-v5.1

vs. OMPI-v1.10.3 vs. ULFM-1.1 implementations.

27

CRAFT Benchmarks: Lanczos, 128 Emmy nodes(-np 256)

 Num. Nodes = 128

 np = 256 (npernode=2)

 Recovery=Non-shrinking

PFS CP Overhead= ~6.26%

SCR CP Overhead= ~0.41%

Comm. Rec. overhead=~2.7sec.

28

*AFT Limitations:

 AFT needs ULFM-MPI.

 Failures are only detected in the next MPI call of the corresponding

communicator.

 One-sided & I/O MPI calls are not fault-tolerant.

 Batch system: Torque (SLURM-support in near future)

 AFT with SCR enabled checkpoints: Modified SCR_Init(MPI_COMM)

 Untested: Real physical failure of node. e.g. cable plug-out test.

29

Summary & outlook:

 CRAFT‘s CR:

• An easier way to add Application-level CR with little modifications in

the application.

• Extendable interface to add any arbitrary data-type.

 CRAFT‘s AFT:

• Enables dynamic process recovery in case of failed process(es) by

defining ‚AFT-zone‘.

• Shrinking, non-shrinking recoveries.

 Future work:

1. Asynchronous checkpoint writing support via tasking.

2. SLURM support for AFT.

3. Multiple node failures/recoveries.

4. Partial node-failure  kill all processes forcefully.

CRAFT checkout @: https://bitbucket.org/essex/craft

30

Thank you!
 Questions!

