
ERLANGEN REGIONAL

COMPUTING CENTER

Faisal Shahzad

CRAFT: A library for

application-level Checkpoint/Restart

Automatic Fault Tolerance

06.04.17

ESSEX
Equipping sparse solvers for Exascale

2

Challenge

 Nowadays, the increasing computational capacity is mainly due to extreme

level of hardware parallelism.

 The reliability of the hardware components do not increase with the similar

rate.

 At exascale-level, the Mean Time To Failure (MTTF) is expected to reduce to

the order of hours or minutes.

 e.g.:

 ‚Intrepid‘, BlueGene/P, debuted # 4 on top 500, june 08: MTTF 7.5 days1

 ‚Sequoia‘, BlueGene/Q, debuted # 3 on top 500, Nov. 13: MTTF 19 hrs2

 The absence of fault tolerant environment will put the precious data at risk.

1) Dongarra J (2013) Emerging Heterogeneous Technologies for High Performance Computing. http://www.netlib.org/utk/people/JackDongarra/SLIDES/hcw-0513.pdf.

2) M Snir et al (2014) Addressing failures in exascale computing. International Journal of High Performance Computing Applications.

http://www.netlib.org/utk/people/JackDongarra/SLIDES/hcw-0513.pdf
http://www.netlib.org/utk/people/JackDongarra/SLIDES/hcw-0513.pdf
http://www.netlib.org/utk/people/JackDongarra/SLIDES/hcw-0513.pdf
http://www.netlib.org/utk/people/JackDongarra/SLIDES/hcw-0513.pdf
http://www.netlib.org/utk/people/JackDongarra/SLIDES/hcw-0513.pdf

3

CRAFT Introduction:

1. Checkpoint/restart(CR):

 Target: A simple and extendable library tool for creating „Application-

level checkpoints“ with minimal code modifications.

 Default checkpointable data types: i) PODs(int, double etc.) ii) POD

arrays iii) POD multiarrays

 Extendable --> to include more data-types.

 Takes care of checkpoint management issues (e.g. restart checkpoint

version).

 Optimizations:

i. Supports SCR-library (LLNL) for neighbor level C/R.

ii. MPI-IO for PFS-level checkpoints.

 Enables: i) Multi-level checkpoint ii) nested checkpoints.

2. Automatic fault tolerance (AFT):

 Dynamic process failure recovery in case of processor failures*

 * Terms and conditions apply

4

CR: Toy example

 A toy-code without(left) and with CRAFT application-level CR functions (right).

Checkpoint: A collection of data objects of checkpointable types.

Checkpointable data-type: A data-type that is recognized by add() function of CRAFT.

5

CR: CRAFT Interface(I)

 Checkpoint::add(…)

• Default CRAFT checkpointable data types include:

i. Plain Old Data(int, double, float, etc.)

 cp.add („myfloat“, &myfloat);

ii. POD arrays:

 cp.add („myint“, &myint, arraySize);

iii. POD multiarrays:

 cp.add („mydbl“, &mydbl, nRows, nCols, toCpCol);

 toCpCol: Column to checkpoint.ALL(default), CYCLIC, An Integer.

 New data types (User-extension): Arguments depend on the data type.

6

CR: CRAFT Interface(II)

 Checkpoint::update()

• Update the asynchronous copy of data.

 Checkpoint::write()

• Iterates through all objects in std::map and updates calles their

corresponding write() function, e.g. cpPOD.write() etc.

 Checkpoint::read()

 Checkpoint::needRestart()

• Checks if there there exist already a copy of the defined checkpoint

in the filesystem.

7

CR: CRAFT design flow

1. Checkpointable class

2. addCpType(…): Instentiates & adds to cpMap.

8

CR: CRAFT extension example(I)

 Extending CRAFT for any arbitrary data-type following 2 steps.

1. Implementing a “Checkpointable class”, derived from CpBase, and

implementing the read(), write(), and update() functions along with

constructor and destructor for the corresponding data type.

2. Implementing a function addCpType(Checkpoint * cp, ...) in

include/addedCpTypes.hpp that instantiates a new object of the above

defined class and adds to the ‘cpMap’. The structure of this function can be

seen in include/addedCpTypes.hpp.

 For example, let us consider the following data type.

9

CR: CRAFT extension example(II)

 Step 1:

 Step 2:

10

CR: CRAFT extension example(III)

 Application usage after CRAFT extention for ‚rectDomain‘ data-type:

11

CR: Optimizations

 Scalable Checkpoint/Restart (SCR) Library support* (developed by LLNL)

i. Enables node-level & neighbor node-level CR.

ii. Less frequent PFS-level checkpoints.

 SCR Limitations

i. Only one Checkpoint instance can be created. (no multi-level &

nested checkpoints).

ii. Each process must write its own checkpoint file independently.

 MPI-IO can be used for all default-supported data-types for PFS-level

checkpoint. (without SCR).

* Terms and conditions apply

12

CR: Directory structure

 Each Checkpoint object maintains and

updates its own directroy.

 The directory structure of all checkpoints is

flat, i.e, no nested checkpoints.

 Each checkpoints keeps the value of latest

valid checkpoint in ‚metadata.ckpt‘.

13

CR: Multi-layered checkpoints

CL1
CL2

CL3

- „CL1“ and „CL2“ form a

nested structure of

checkpoints.

- All initializations of

nested Checkpoints

must be done only once.

14

CR: hybrid PFS/node-level CRAFT Checkpoints

 High frequency CPs => node-level via SCR

 Low frequency CPs => PFS.

• CRAFT compiled with SCR.

• SCR can be disabled for any

particular Checkpoint object.

• Disabled SCR-checkpoints

are stored at PFS

 In multi-level checkpoint

environment, only one

checkpoint can be stored

using SCR.

15

Automatic fault tolerant (AFT):

 AFT: Dynamic process(es) recovery in case of process failure(s).

1. A fault tolerant communication (avoids deadlocks in case of

failed processes)

 ULFM-MPI

 Error handler / MPI call return value

 Error propagation via MPI_Comm_revoke()

2. Communication recovery

 Shrinking/Spawning

3. Data recovery

 Easy option: Checkpoint/Restart

 Algorithm Based Fault Tolerance

16

Automatic fault tolerance(AFT):

 An ‚AFT-zone‘ is created between

AFT_BEGIN() and AFT_END()

region.

 The process failures (of the given

communicator) within the AFT-

zone are recovered dynamically.

 Communicator Recovery options:

1. Shrinking

2. Non-shrinking

A
F

T
-z

o
n
e

17

Introduction to ULFM* (I)

 The User Level Failure Mitigation (ULFM) proposal is developed by

MPI-Forum‘s Fault Tolerance Working Group.

 Target: To provide a simple, flexible and deadlock-free API that helps

users to recover from failed communications due to process-failure.

 This is NOT an application recovery API.

 Once the communication is restored, the data recovery is user‘s

responsibility.

 Implemented as an mpi-extension on top of Open MPI implementation

 Early stage implementation: to test correctness, not performance.

* http://fault-tolerance.org/

18

Introduction to ULFM (II)

 Error handler on working communicator:

 MPI_ERRORS_RETURN

 User defined error handler

 MPIX_Comm_revoke(MPI_Comm comm);

 MPIX_Comm_shrink(MPI_Comm old_comm, MPI_Comm * new_comm);

 MPIX_Comm_agree(MPI_Comm comm, int * flag);

 MPI_Comm_spawn(… numproc_spawn, spawn_info, &icomm …);

 Merging intercomm to give an interacomm + reordering ranks to give

spawned process same rank as dead-rank.

 MPI_Intercomm_merge()

 MPI_Group_translate_ranks()

Image courtesy: http://meetings.mpi-forum.org/2014-11-scbof-ft.pdf

19

AFT: AFT-zone

A
F

T
-z

o
n
e

20

AFT: AFT-zone

AFT_END

First run: duplication of MPI_COMM_WORLD is

created and errhandler is assigned to new comm.

In case of Failure: errhandler revokes the

comm_working.

Spawned + surviving procs.

After app_needs_repair() call, the

spawned process is merged into

‚comm_working‘ and it has the same

rank as dead processs.

- ‚try-catch‘ block in a ‚do-while‘ loop.

- ‚do-while‘ loop runs untill try block is run

successfully

A
F

T
_

B
E

G
IN

21

Automatic fault tolerant (AFT): Process recovery

CRAFT comm. recovery

Data recovery

(application-

dependent)

AFT_Begin(FT_Comm)

P0

P1

P2

P3

Spawned

P2

AFT_END()

22

AFT: Communication recovery options

 Shrinking

 Non-shrinking

Pros Cons

o Domain may need redistribution for effective

resource utilization.

o For domain redis., one checkpoint for whole job

=> no SCR.

 No extra resources (nodes) needed

Pros Cons

o If new nodes are used for spawned procs.,

preallocation of extra nodes is necessary.
 If procs. are spawned at same node,

no extra resources needed.

 No redistribution of domain.

23

CRAFT Parameters:

Table 1: The CRAFT parameters description. Note: 1=enable, 0=disable

24

CRAFT Benchmarks: comm. recovery scaling

25

CRAFT Benchmarks: spawn + merge comparison

 A scaling comparison of spawn and merge routines for Intelmpi-v5.1

vs. OMPI-v1.10.3 vs. ULFM-1.1 implementations.

27

CRAFT Benchmarks: Lanczos, 128 Emmy nodes(-np 256)

 Num. Nodes = 128

 np = 256 (npernode=2)

 Recovery=Non-shrinking

PFS CP Overhead= ~6.26%

SCR CP Overhead= ~0.41%

Comm. Rec. overhead=~2.7sec.

28

*AFT Limitations:

 AFT needs ULFM-MPI.

 Failures are only detected in the next MPI call of the corresponding

communicator.

 One-sided & I/O MPI calls are not fault-tolerant.

 Batch system: Torque (SLURM-support in near future)

 AFT with SCR enabled checkpoints: Modified SCR_Init(MPI_COMM)

 Untested: Real physical failure of node. e.g. cable plug-out test.

29

Summary & outlook:

 CRAFT‘s CR:

• An easier way to add Application-level CR with little modifications in

the application.

• Extendable interface to add any arbitrary data-type.

 CRAFT‘s AFT:

• Enables dynamic process recovery in case of failed process(es) by

defining ‚AFT-zone‘.

• Shrinking, non-shrinking recoveries.

 Future work:

1. Asynchronous checkpoint writing support via tasking.

2. SLURM support for AFT.

3. Multiple node failures/recoveries.

4. Partial node-failure kill all processes forcefully.

CRAFT checkout @: https://bitbucket.org/essex/craft

30

Thank you!
 Questions!

