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Explosive increase of real-­‐time data streams gives highly demands for real-­‐time analysis over the streams. However,
developing tailor-­‐made systems for such applications is not always desirable due to high developing costs. To cope with this
problem, we propose a novel architecture for online analytical processing (OLAP) over streams exploiting off-­‐the-­‐shelf
stream processing engine (SPE) combined with OLAP engine. It allows users to perform OLAP analysis over streams for the
latest time period, called Interval of Interest (IoI). The system in the meantime processes multiple continuous query
language (CQL) queries corresponding to different aggregation levels in cube lattice. To cover arbitrary aggregation levels
using limited system's memory, we propose to partially deploy CQL queries for those with higher reference frequencies,
whereas the results are dynamically calculated using existing aggregation results with the help of OLAP engine. For optimal
CQL query deployment, we propose a cost-­‐based optimization method that maximizes the performance. The experimental
results show that the proposed system significantly outperforms other comparative methods.

Parallel	
  Canopy	
  Clustering	
  on	
  GPUs

Canopy clustering is a preprocessing method for standard clustering algorithms such as k-­‐means and hierarchical
agglomerative clustering. Canopy clustering can greatly reduce the computational cost of clustering algorithms. However,
canopy clustering itself may also take a vast amount of time for handling massive data, if we naively implement it. To
address this problem, we present efficient algorithms and implementations of canopy clustering on GPUs, which have
evolved recently as general-­‐purpose many-­‐core processors. We not only accelerate the computation of original canopy
clustering, but also propose an algorithm using grid index. This algorithm partitions the data into cells to reduce redundant
computations and, at the same time, to exploit the parallelism of GPUs. Experiments show that the proposed
implementations on the GPU is 2 times faster on average than multi-­‐threaded, SIMD implementations on two octa-­‐core
CPUs.
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(a) Partitioned data space.

G0,0 = {x2}, N
(
G0,0

)
= {G1,0, G1,1}

G0,2 = {x1}, N
(
G0,2

)
= {G1,1, G1,2}

G1,0 = {x3,x5,x7}, N
(
G1,0

)
= {G0,0, G1,1, G2,1}

G1,1 = {x4},
N
(
G1,1

)
= {G0,0, G0,2, G1,0, G1,2, G2,1, G2,2}

G1,2 = {x6}, N
(
G1,2

)
= {G0,2, G1,1, G2,1, G2,2}

G2,1 = {x8}, N
(
G2,1

)
= {G1,0, G1,1, G1,2, G2,2}

G2,2 = {x9}, N
(
G2,2

)
= {G1,1, G1,2, G2,1}

(b) Corresponding grid cells.

Fig. 4: An example of grid index.

accomplished by computing the distances only between data points in a cell and
its neighbor cells. A cell is called a neighbor of another cell if each dimension
of the cell coordinates does not differ more than one, and the information of
neighbors is also associated to grid cells. The other cells do not need to be taken
into consideration in canopy creation because, if two cells are not neighbors, the
distance between two points in each cell must be greater than T1.

Figure 4 shows an example of partitioned data space and the corresponding
grid cells. In Fig. 4(b), N

(
G
)
means a set of neighbors of G. By using the grid

index, we can create a canopy as follows: Let us consider that the point x3 is
selected as a center. Since this point belongs to the cell G1,0, the distances are
computed against the points in G1,0 and its neighbor cells. In this case, the
neighbors are G0,0, G1,1, and G2,1. Distances are computed against five points
(i.e., x2, x4, x5, x7, and x8). Thus we can omit the distance computations with
regard to the other three points (i.e., x1, x6, and x9).

5.2 Implementation

This section presents how to efficiently implement canopy clustering with grid
index on GPUs. It is especially important to efficiently construct a grid index on
GPUs and to create multiple canopies in parallel. The following explains how to
construct a grid index, how to select multiple centers, and how to create multiple
canopies in parallel, one by one.

Constructing Grid Index on the GPU A grid index can be represented
by two sparse binary matrices: a matrix of cell members and a matrix of neigh-
bor information. A sparse binary matrix, in turn, can be expressed by two 1-
dimensional arrays as used for canopies. Thus we store a grid index on the GPU
as four 1-dimensional arrays in total. Such a grid index is efficiently constructed
on the GPU by exploiting fast data-parallel primitives in three steps: computing
cell coordinates from data points and sorting them; building the cell-member
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