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. Architecture for Stream OLAP Exploiting SPE and OLAP Engine

Explosive increase of real-time data streams gives highly demands for real-time analysis over the streams. However,
developing tailor-made systems for such applications is not always desirable due to high developing costs. To cope with this
problem, we propose a novel architecture for online analytical processing (OLAP) over streams exploiting off-the-shelf
stream processing engine (SPE) combined with OLAP engine. It allows users to perform OLAP analysis over streams for the
latest time period, called Interval of Interest (lol). The system in the meantime processes multiple continuous query
language (CQL) queries corresponding to different aggregation levels in cube lattice. To cover arbitrary aggregation levels
using limited system's memory, we propose to partially deploy CQL queries for those with higher reference frequencies,
whereas the results are dynamically calculated using existing aggregation results with the help of OLAP engine. For optimal
CQL query deployment, we propose a cost-based optimization method that maximizes the performance. The experimental
results show that the proposed system significantly outperforms other comparative methods.
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Fig. 1: Architecture of Stream OLAP system Fig. 2: Stream OLAP system analyzing “People Flow Data”

) Parallel Canopy Clustering on GPUs

Canopy clustering is a preprocessing method for standard clustering algorithms such as k-means and hierarchical
agglomerative clustering. Canopy clustering can greatly reduce the computational cost of clustering algorithms. However,
canopy clustering itself may also take a vast amount of time for handling massive data, if we naively implement it. To
address this problem, we present efficient algorithms and implementations of canopy clustering on GPUs, which have
evolved recently as general-purpose many-core processors. We not only accelerate the computation of original canopy
clustering, but also propose an algorithm using grid index. This algorithm partitions the data into cells to reduce redundant
computations and, at the same time, to exploit the parallelism of GPUs. Experiments show that the proposed
implementations on the GPU is 2 times faster on average than multi-threaded, SIMD implementations on two octa-core
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