University of Tsukuba | Center for Computational Sciences

Database Group

. Architecture for Stream OLAP Exploiting SPE and OLAP Engine

Explosive increase of real-time data streams gives highly demands for real-time analysis over the streams. However,
developing tailor-made systems for such applications is not always desirable due to high developing costs. To cope with this
problem, we propose a novel architecture for online analytical processing (OLAP) over streams exploiting off-the-shelf
stream processing engine (SPE) combined with OLAP engine. It allows users to perform OLAP analysis over streams for the
latest time period, called Interval of Interest (lol). The system in the meantime processes multiple continuous query
language (CQL) queries corresponding to different aggregation levels in cube lattice. To cover arbitrary aggregation levels
using limited system's memory, we propose to partially deploy CQL queries for those with higher reference frequencies,
whereas the results are dynamically calculated using existing aggregation results with the help of OLAP engine. For optimal
CQL query deployment, we propose a cost-based optimization method that maximizes the performance. The experimental
results show that the proposed system significantly outperforms other comparative methods.

Stream Data

(part, supplier, time, sales)

d, A, 10:00:47, 300

"

Stream Processing Engine

| | Window DIMENSION INTERVAL OF
: ¢, B, 10:00:25, 500 : o St
1 min EYSTITITRT Query Time variation Filtering Graph Tabular Map SELECTION INTEREST
a3, A10:00:08,100 | | ,
T + RSTREAM [1 minute] (:
. i SELECT s_name, minute, SUM(sales) | Show map Female Age: 10< n <15 2015-10-01 11:09 gender _
Aggregation < Register | FROM stream [RANGE 1 minute] age OAll data available
A4 8 : GROUP BY s_name, minute E v \) Wﬁw TS - work The most recent:
| 81000500 | —— | oo S A Plan Satellite p._ > ltabashi Ward/Office— S) purpose 7 minutes data
. - o L ’ N — i . :
A, 10:00, 400 \ - 7 L= - ° 5 BEI:H“? N home_address Fixed time:
- BLRA 3 Tabata ~) transport From
P - Fujimidai = (B2 /, MEEE | To
- . X e 5 by liRam L prie= 4 Nipp ocation
New result preserved JPie OLAP Engine Shimﬁﬁf ;ﬁ;;n?mi _ Figashi-Nagasaki 108 e -
- ==
— o - N %) . 'J%\é" / \ approx
1 hour D ‘ "Nogata imo=Ochiai }/ < 108 \
- ata Buffer R - j
(p_name, s_name, minute) ,,” r A \ ' A AL LI — ”%‘ B ; L_Jte"r? e
/ \ x s e e—— o — Old reSUIt ﬁga%’] Bﬁ]ﬁb’.é—.— I ‘:/’ ‘ S SEE@K time
s - . . . ikubo - Asagaya ‘ - : i
(p_name, minute)| (s_name, minute) 1 SR G 0900 120 | deleted i Skubo 3 idamson \ wER N Sl
- \ - X B,09:59, 280 | [C,09:58 300 | = = = [B,09:00, 500 > , , ¥l 36 Akihabara == Tl ido
. ¥ ~~/ Shinjuku-Ward Office \ : ‘ '
' {gistere d query [A 09:59,100 | [A 09:58, 560 [A 09:00, 400 || e O\ Ay & 173 > 3 ‘ , ‘Higﬁh%oﬁm%?l Select Al Unselectd All
(minute) B m— — hetl | PR =\ “~_ Yotsuya'@ , . o e S ' A

J

Minami-Shinjuku
>

I'. ZJN fw)
' Tokyo/
(p_name, s_name, hour) \) “Tokyoy

a i |
& 5 G
' e 15, Mol Ui

ama \ N ; =
L 3 - \ F
3 Ik i b <\) - N B (I er' |
[ifukucho N\ ; eiji Jingu W/ : ~ f o LRXIEF SEND
/ Aggregation D - 46 , V‘,\ otoWarc W' e
Result o 79 P 30 lgos o REQUEST
(p_name, hour)(\1' C, 09, 12500 > ‘ ot & Shimbashi {f et Market, |~ J
_ ’ ' ’ in-Daita \ ;“!j;_é - / ¢ \,/ "m = 3 +
\ | B 10,500 || B,09,54200 > Shibuya™? ,
:' (egaoka

Ay P y o ‘
V4 osu

: . Toye HE o
r . EE -y xaw / : A /\/ VAsAl ~=pll
hEE - Ebisu 4 Données cartographiques ©2015 Google, ZENRIN ' ~Conditions d'utilisation

A, 10, 400 A, 09, 29000 Result

(hour)

\
on-demand query

Fig. 1: Architecture of Stream OLAP system Fig. 2: Stream OLAP system analyzing “People Flow Data”

) Parallel Canopy Clustering on GPUs

Canopy clustering is a preprocessing method for standard clustering algorithms such as k-means and hierarchical
agglomerative clustering. Canopy clustering can greatly reduce the computational cost of clustering algorithms. However,
canopy clustering itself may also take a vast amount of time for handling massive data, if we naively implement it. To
address this problem, we present efficient algorithms and implementations of canopy clustering on GPUs, which have
evolved recently as general-purpose many-core processors. We not only accelerate the computation of original canopy
clustering, but also propose an algorithm using grid index. This algorithm partitions the data into cells to reduce redundant
computations and, at the same time, to exploit the parallelism of GPUs. Experiments show that the proposed
implementations on the GPU is 2 times faster on average than multi-threaded, SIMD implementations on two octa-core

CPUs. (0,2) (1,2) (2,2)
| : 9
Algorithm 1: Simple Canopy Clustering. e T PP L
Input: A set S of data points a;, thresholds 71 and 7% (0,1) E (1,1) 1 (2,1)
1 C«+ 0 > C is a set of canopies | T L3
2 YV« S o Y isa set of center candidates ® I, |
3 while & # () do ' —— Gio = {x3, 5, 7}
4 c + get a point from X at random > c is a center ! Ti ! 1,0 3y oDy LT
5 C <+ 0 (‘ “““““ it el
0,0) ' (1,0) ' (2,0)
6 | forzecSdo ' N(G =1Goo,G1.1,G
7 if d(x,c) < T: then ' (1’0) { 0,0, 1,1 2’1}
8 ‘ C + CU{x} > a canopy C includes a point x ? L3 |
9 end ®Ir, ! ® I
10 if d(x,c) < Ts then e :
11 2+ 2 —Ax > remove @ from the candidates . « g e
1o e’nd e} Fig. 4: An example of grid index
iz (e:ni cu {C} ®® cpu-simple H-l cpugrid A-A gpu-simple V¥-W gpu-grid
18- 90
15 end 16 ol
16 return C S 14 g 70/
while there exist candidates do i e
o , . 7 compute_distances(); =i T
(1)Divide while loop into , 2 ¢ 2.0
ernettun select_center(); 0 . L S A R
(Z)Run the functions on GPUs end Number of points (x 10°) Number of points (x 106) Number of points (x10°)
(a) d =2,Ty = 0.02. (b) d =4,T: = 0.15, (c) d=6,T1 = 0.35.
Fig. 3: Canopy Clustering Algorithm on GPUs Fig. 5: Overall performances (d: dimensionality, T;: grid size)

contact address: {kitagawa, amagasa, shiokawa}@cs.tsukuba.ac.jp http://www.ccs.tsukuba.ac.jp/

