University of Tsukuba | Center for Computational Sciences

Software Researches for Big Data and Extreme-Scale Computing

) Gfarm: a High Performance Distributed File System for Supercomputing [1,2]

Gfarm file system is an open source distributed file system. It is designed for both the cluster ~Compute nodes Meta-data
environment for high performance data analysis, and the geographically distributed = Fijle System nodes Server

environment for global data sharing and archive. Gfarm provides high performance by
exploiting parallel 1/0, and high availability by leveraging data replication service. Gfarm is Scalable |/O

used in a variety of scientific projects as the astronomical pipeline for Subaru telescope with

104 CCDs.

D Object Storage using OpenNVM for High-performance Distributed File System [3]

This is a fast object storage for ioDrive that supports virtual address space and atomic-write. In our Initial Performance result for object creation

object storage, regions are located in fixed position in virtual address space in ioDrive. One region
manages one object. All meta-data about the object store the region. We use the address of the first
sector of region as object ID. Our object storage has two writing modes in region: Version Mode and ¢, -

Direct Mode. :
uper . . :
e Region 1 Region 2 Region N

Next Region ID[]

. Fast Window Aggregate on Array Database
by Recursive Incremental Computation [4]

800 1 —e-Version Mode

——Direct Mode

~XFS

2 —directFS

Threads

. On Exploring Efficient Shuffle Design for In-
Memory MapReduce [5]

Query: select max(v) from arr grouping by window (2,3)

4171318 /7178 8|8
5(2|6|2|2 l 919644
319/ 3|2 4 919/ 8,66
/717|82|6 /717|866
60 | | | | | |
Naive ——
50 - Materialized Naive —— _
™ Basic IC —»=—
s 40 Recursive IC —+=—
E 30
g 20
. 10
0

5x5 10x10 15x15 20x20 25x25 30x30 35x3540x40

Window Size (cells)

We propose a method that exploits the scheme of incremental
computation to accelerate the execution of window aggregates. Our
proposed recursive incremental computation method completely
eliminates all redundant computation, and it is fully implemented in
SciDB. It improved performance by a factor of 10 on an earth science
benchmark and by a factor of 64 on synthetic workloads with a
certain data setting when compared with SciDB’s built-in window
operator.

Acknowledgment

This work is partially supported by JST CREST “System Software for Post Petascale Data Intensive Science”, JST CREST “Extreme Big Data (EBD) Next Generation

Big Data Infrastructure Technologies Towards Yottabyte/Year”, JST CREST “Statistical Computational Cosmology with Big Astronomical Imaging Data”, and KAKENHI
#16K00150.

contact address: pr@ccs.tsukuba.ac.jp

Fully-Connected
Pairwise (MPI) (Spark, Hadoop)

e

7 250 BiGram Count
c
o
g 200
£ 150
|_
S 100
=
g 50
n

0

2 4 8 16 32 64 128 256 512
File Size (GiB)

-@-Spark -®-Fully-Connected (IPolB on socket)

Fully-Connected (RDMA on rsocket) -@-Pairwise (IPolB on socket)
-®-Pairwise (RDMA on rsocket)

Shuffling, the inter-node data exchange phase of MapReduce, has been
reported as the major bottleneck. We compared RDMA shuffling based
on rsocket with the one based on IPoIB. We also compared our in-
memory system with Apache Spark. Our system demonstrated
performance improvement by a factor of 2.64 on BiGram Count as
compared to Spark. We conclude that it is necessary to overlap map
and shuffle phases to gain performance improvement.

Reference

[1] Osamu Tatebe, Kohei Hiraga, Noriyuki Soda, "Gfarm Grid File System,” New Generation Computing, Ohmsha, Ltd. and Springer, Vol. 28, No. 3, pp.257-275,
2010.

[2] Gfarm File System, http://oss-tsukuba.org/en/software/gfarm

[3] Fuyumasa Takatsu, Kohei Hiraga, Osamu Tatebe, “Design of Object Storage Using OpenNVM for High-performance Distributed File System,” Journal of
Information Processing, Vol. 24, No. 5, pp. 824-833, 2016.

[4] Li Jiang, Hideyuki Kawashima, Osamu Tatebe, "Fast Window Aggregate on Array Database by Recursive Incremental Computation," The IEEE 12th
International Conference on eScience, accepted.

[5] Harunobu Daikoku, Hideyuki Kawashima, Osamu Tatebe, “On Exploring Efficient Shuffle Design for In-Memory MapReduce,” BeyondMR workshop, Article
6, 2016.

http://www.ccs.tsukuba.ac.jp/

