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91 Introduction




Linear systems with multiple right-hand sides
§1 Introduction

—r Linear systems with L right-hand sides -}—

AX =B
Here, A € C™" : nxn non-Hermitian matrix,

X = [x0,2,...,x"], B = [60,52,..., 5]
y

- This linear system appears in ...
‘."; Eigensolver using contour integral (SS method)

® Physical value calculation in Lattice QCD
m) Linear system with 12 ~ 100 multiple right-hand

sides need to be solved.
\_ _J
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| Krylov subspace methods for solving AX =B !
§1 Introduction

Block Krylov subspace methods

(RN
* Block BiCG O’ LLeary (1980)

* Block GMRES Vital (1990)
* Block QMR Freund (1997)
* Block BiCGSTAB El Guennouni (2003)

.

Linear system with multiple right-hand sides can be
efficiently solved by using Block Krylov methods
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Property of Block Krylov subspace methods

. . 1 Introduction
What is “efficient?”’ > -

» Residual norm of Block Krylov methods may converge
in smaller number of iterations than that of Krylov methods
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| Pros and cons of Block Krylov subspace methods !
§1 Introduction

- Pros ~
* Linear system with L RHSs can be solved simultaneously.

* The number of iterations of Block Krylov subspace methods

. may smaller than that of Krylov subspace methods. )

— Cons N

* The accuracy of the obtained approximate solution may
not good if the stopping condition is satisfied!

The relative residual norm may not converge due to the

influence of numerical instability when the number of

right-hand sides L is large. y

g
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Objectives of this research
§1 Introduction

! Objectives I

. We develop a Block Kryloy subspace method
for computing high accuracy solutions.

. We improve the numerical instability of Block
Krylov subspace methods when the number of
right-hand sides is large.
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linear solver




Definition of a residual and an operation
Linear SYS tems §2 Development of a high accuracy linear solver
| AX =B, AeC™ X,Be€ @nxLJ Def. of an operation o

‘ Mi(A)oV =Y ATVM,
=0

J:

The (k+1)th residual ko

a2 )

- B — AXk.|.1 Here, Mk(Z) = Z;)ZJMj,
J:

(Hi+1Rr+1)(A) © Ro)

Rk+1

MJ' € @LXL, V € @nXL.

\-
- Recursions of polynomials \

Ro(z) = Po(2) = Iy, Ho(z) =1,
Ri+1(z) = Ri(z) — 2Pr(D)ak, Hi+1(z) = A = G2y Hi(2)
Pi+1(2) = Ri+1(z) + Pir(2)Bx Here, @k, preC 2 , (i € C.

\. J
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Derivation of recurrence formulas

§2 Development of a high accuracy linear solver

There are two ways of derivation of recurrence formulas

~—— The (k+1)th residual —
Riy1 = B—-AXppn

(His1Ri+1)(A) © Ry
. Y

Expand from H ;.4 (

[ Block BiCGSTAB J
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| Algorithm of the Block BiICGSTAB method l

Xy € C™L is an initial guess,

Compute Ry = B — AX,,

Set Py, = R,,

Choose R, € C™L,

For k =0,1,...,until ||R||lr < &||B||r do:

Solve (R(P)IAPk)ak = R{)*Rk for ay,
T, = R, — APy,

Tr[(ATy)" Ty ]

Tr[(AT)HAT]

Xi+1 = Xi + Pray + § Tk,

Riv1 = Ty — §iATYy,

Solve (R{'V)Bi = =RV Z, for By,

Pii1 = Rpy + (Pk — &Vi)Pr,
End

i

J
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Relationship between the true residual and the recursive residual

§2 Development of a high accuracy linear solver

Theoretically, the true residual B — AX, is equal to the
recursive residual R,.

B—AXk=Rk

If the recursive residual R, becomes zero matrix, then
the true residual B — AX, also becomes zero matrix.
Hence, X, is the exact solution.

However, the equation B — AX, = R, is not satisfied in the
numerical computation.
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The error matrix in Block BiICGSTAB

§2 Development of a high accuracy linear solver

k k
Xi+1 = Xy + Prag + § Ty Xeo1 = Xo + Y Pjoj + Y 4T
Rk+1 = Rk - APkak - {kATk j=0 j=0

k k
Here, Rii1 = Ry — Z(Apj)a’j - Z ¢i(AT))
s =0

Xka Rka Pka Tk S CnXLa J=0

~ Recursions of X, and R, ; y~—— Expansion of recursions —

J

.
ay € CH*L, 4 e C.

k
Y |4/(AT) - AT
=0

k
B = AXiw1 = Risy + ) [(AP)e; = A(Pje)| +
L £

J:

\.

— The relationship between the true res. and the recursive res. —

J
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Example of effect of the error matrix

Matrix : JPWH991 (from Matrix Market) §2 Block Krylov methods
#RHS : L =4 10" . . . 10"
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Fig. 2. Relation between the true rel. res. and the error matrix norm.

1B = AXille/IBlle , B |[Relle/1IBlle , M 2 Ekle/1IBllr.
k-1

k-1
Here, B, = Y [(AP))a; — A(Pjap)| + Y [£(AT)) - AT))].
J=0 Jj=0




Derivation of recurrence formulas
§2 Development of a high accuracy linear solver

There are two ways of derivation of recurrence formulas

~—— The (k+1)th residual —
Riy1 = B—AXp

= (Hx+1Ri+1)(A) 0 Ro

Expand from H ( ‘ Expand fromR ;41

[ Block BICGSTAB ] [ Block BiICGGR ]
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| Algorithm of the Block BICGGR method l

( N
Xo € C™L js an initial guess,

Compute Ry = B — AX,,

Set Py = R,,

Choose R, € C"™L,

For k=0,1,...,until ||R||lr < &||B]|r do:
Solve (iéglAPk)ak = iégle for ay,
tr[(AR)" R]

tr[(AR)HAR,]

Ur = (Pr — (AP,
Xiv1 = Xy + (i Ry + Uy,
Riv1 = Ry — {kARy — AUy,

Solve (ROHRk)’Yk = R?Rkﬂ/ Sx for yy,
Pri1 = Rypyr + Urys,

APpy1 = ARpp + AUyyi,

L End For

=

J
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The error matrix in Block BiICGGR
§2 Development of a high accuracy linear solver

~ Recursions of X,,; and R, y— Expansion of recursions —
Xk+1 = Xi + Ry + Uy

Ri1 = Ry — (AR — AU,

\ J

k
Here, Riv1 =Ry - ) (i(ARj) -

Xy Ry, Uy € CnXL, {k € C. L J=0 j=0

\

~— The relation between the true res. and the recursive residual —

k
=0

\ J= y
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Comparison of two methods

§2 Development of a high accuracy linear solver
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Numerical instability when #RHSs is large
{3 Stabilization of Block BiCGGR
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Pros and cons of Block Krylov subspace methods
§3 Stabilization of Block BiCGGR

- Pros ~
* Linear system with L RHSs can be solved simultaneously.

 The number of iterations of Block Krylov methods is may

. smaller than that of Krylov subspace methods. )

— Cons N
* The accuracy of the obtained approximate solution may
not good even if the stopping condition is satisfied!

The relative residual norm may not converge due to the

influence of numerical instability when the number of

9 right-hand sides L is large. y
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Cause of numerical instability of Block BiICGGR

Xo € C™L js an initial guess,
Compute Ry = B — AX,,
Set Py = R,
Choose R, € C"™<L,
For k =0,1,...,until ||R||r < &||B]|
Solve (R?APk)afk = R?Rk for ay,
tr[(AR)"R]
tr[(AR)HAR,]
Ur = (Pr — (AP,
Xiv1 = Xy + SRy + Uy,
Riv1 = Ry — {kARy — AUy,
Solve (R:){Rk)yk = R(I){Rk+1/§k for v,
Pri1 = Rypyr + Urys,
APpy1 = ARpp + AUy,
End For

Japan-Korea HPC Winter School

{3 Stabilization of Block BiCGGR

Small linear systems need
to be solved to obtain LxL
matrices @y, Y.

4

Cause of numerical instability

If the linear independence of R,

and P, is lost, the small coefficient

matrices become ill-condition.
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Stabilization of Block BiICGGR by residual orthonormalization
{3 Stabilization of Block BiCGGR

— In order to improve the numerical instability *** ——

We consider to improve linear independence of the vectors.

» Perform the orthonormalization of vectors.

‘ In this stydy -

We develop the Block BICGGRRO method. The residual

matrix R, of this method is orthonormalized as follows.
Ry = Quér, Q0 =11, & e CHF
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Algorithm of the Block BiCGGRRO method

X, € C"*L is an initial guess, §3 Stabilization of Block BiICGGR

Compute Qyéo = B — A X, —
Orthonormalization

Set SO = Q09
Choose R, € C™L,

For k =0,1,...,until ||&llr < €l|Bllr do:
Solve (I??ASk)ak = ﬁ?Qk for oy,

S = arg min [|Qx & — {AQ kil

4
Vi = Sk — {kASk)ag,

Xiv1 = Xi + [851Qk + Vi] &k,
Qrs1Tke1 = Qi — §xAQy — AV,
k1 = Tk+16ks
Solve (EOHQk)Yk = R?Qkﬂ/{k for yy,
Si+1 = Ore1 + ViYes
ASii1 = AQps1 + AVyiyi,
| End For )
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S4  Numerical Experiments




Test problem

§4 Numerical experiments

Test problem

Linear system with multiple right-hand
sides derived from Lattice QCD.
AX =B
n=1,572,864, nnz(A) =80, 216, 064,
the number of nnz(A) per row is 51.

.

Fig. 5. Nonzero structure.
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Experimental environment and conditions

§4 Numerical experiments

Table 1. Experimental environment.

CPU AMD Opteron 6180 SE 2.5GHz x 4
Memory 256.0GBytes
Compiler PGI Fortran ver. 11.5
Compile option -03 —-tp=x64 -mp

Table 2. Experimental conditions.
Initial solution X, [0,0,...,0]
Right hand side B le1,e2,...,€1]
Shadow residual R, Random number

Stopping criterion IRkIlx/IIBllr < 1.0 x 10~
prmE or ||Ri|lr/1IBllr = 1.0 x 10°
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Comparison of Block BiCGGR and Block BiCGGRRO

§4 Numerical experiments
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| Comparison of Block BiICGGR and Block BICGGRRO l

Table 3. Results of Block BICGGR.

L=1 L=2 L=4 L=8 L =12
AT 1481 1131
99 x 10" | 6.2x 107" | 9.3 x 10~ | Divergence | Divergence
107.7 106.6 152.5

Table 4. Results of Block BICGGRRO.

Iter.
TRR

Time

Iter. - Number of iterations, TRR : True relative residual norm,

Time : Computational time in seconds.

0C | can aiso generate 1211 ACCUracCy soiutions.
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Summary

E

e developed the Block BiCGGR method. This method™
can generate high accuracy solutions compared to the

conventional method.

. We improved the numerical instability of the Block
BiCGGR method by performing the residual

orthonormalization when the number of right-hand sides

is large.




