JAPAN-KOREA HPC WINTER SCHOOL

0

JAPAN-KOREA
HPC WINTER SCHOOL

- Parallel numerical algorithms -

Hiroto Tadano

tadano@c¢s.tsukuba.ac.jp

Center for Computational Sciences

University of Tsukuba

JAPAN-KOREA HPC WINTER SCHOOL

0

Contents

e Methods for solving linear systems Ax = b
— Krylov subspace iterative methods
— Storage formats for sparse matrices
— Parallelization of basic linear algebra calculations

— Preconditioning

e Methods for solving linear systems with
multiple right-hand sides AX =B

— Block Krylov subspace iterative methods
— Parallelization with OpenMP

JAPAN-KOREA HPC WINTER SCHOOL

0

Methods for solving linear systems
Ax=D>b

. . JAPAN-KOREA HPC WINTER SCHOOL
Analysis of natural and engineering @
S

phenomena

Approximate solution of

[Natural and engineering} <: partial differential
phenomena equations
Analysis
@ Modeling ﬁ Solve Ax = b
Initial / Boundary value Linear svstems
problems of partial differential :> A Y b }
. X =
equations Discretization

Linear equations appears in many scientific applications.
However, the solution of linear systems is the most time-consuming part.

Linear systems

[dq
as

| Ayl

Linear systems appear in many scientific applications.

Linear systems : Ax = b

ain
an)

Alp |

Ao

Upn

JAPAN-KOREA HPC WINTER SCHOOL

0

However, the solution of linear systems is the most time-consuming part.

JAPAN-KOREA HPC WINTER SCHOOL

Direct methods and iterative methods (&5

Direct methods

1)

2)

Gaussian elimination, LU factorization, etc.

We can always obtain solution in a finite number of operations.

Number of nonzero elements increases in transformation of

coefficient matrix A.

—~ We cannot utilize coefficient matrix sparsity.

Direct methods

@ Gaussian elimination method
Ax =0b

—6111 aip ...
a1 dry ...

L dpl A2 - -

Aoy

alnﬂ |

ann_ |

by
by

| Dy |

@ LU decomposition method

The coefficient matrix A

Ly

is only transformed.

[U1

uir ...
Uy ...

JAPAN-KOREA HPC WINTER SCHOOL

JAPANKOREA HPC WINTER SCHOOL
Direct methods: Gaussian Elimination S

Step 1. . . [uip Ui ... Uy 11 X1] [bll]
Transtorm the matrix A of the linear [0 y,, ... uy, || xo A
system Ax = b to an upper triangular | . . . = S A
matrix U. IO A O By 7P b S D),
- Computational complexity : n3 /3. - - ~ T e

Step 2.
Solve the linear system Ux = b’ by backward substitution with
the following recursion formula.

Xi = (b = Uij1Xip1 — - oo — UinXp)[Uig, T=n,n—1,...,1

- Computational complexity : n?/ 2.

JAPAN-KOREA HPC WINTER SCHOOL

Direct methods: LU decomposition @

Step 1.

Perform the LU decomposition of the coefficient matrix A.
A=LU

L : Lower triangular matrix, U : Upper triangular matrix.

- Computational complexity : n?/ 3.

] O_ [Ui, U122 ... Uy 11 X1 | [bl]
12,1 1 U ... Uy X2 bz
B ln’l ln’z o o o 1 1L O un,n 1L .Xn B | bn B

h
S 4

JAPAN-KOREA HPC WINTER SCHOOL

Direct methods: LU decomposition @

Step 2. Find x using forward / backward substitution.

1) Solve Ly = b for y by forward substitution. Here, y = Ux.

1 O (vi | [b1]

by 1 2)

PR | N
2) Solve Ux =y for x by backward substitution.

U U1 ... U, || X [V1]
Uzo ... Uy X2 2

_O Uppn 1L Xn | [Yn |

Once LU decomposition has been performed, solutions can be found for
other right-hand vectors with a computational complexity of n?.

10

JAPAN-KOREA HPC WINTER SCHOOL

Direct methods and iterative methods @

Iterative methods

Krylov subspace methods
1) Required operations are
* Multiplication of a coefficient matrix and a vector : Au
e Inner product of vectors : (u,v) = u'ly
* Constant times a vector plus a vector : au +v

___~ We can utilize coefficient matrix sparsity.

2) Some problems may require many number of iterations

11

JAPAN-KOREA HPC WINTER SCHOOL

Krylov subspace methods S

* X, 1s an initial guess. The vector x, 1s k-th approximate solution of
the linear system Ax = b. x, 1s updated by the iteration process.

o K(A;rp) is called a Krylov subspace. This subspace is spanned by
the vectors r,, Ar,, ..., A'r,.

e The vector r, = b — Ax, is called an initial residual vector.
X0 + Ki(A; ro)

xo + Ki—1(A; rp)

Sketch of Krylov subspace methods. -12-

JAPAN-KOREA HPC WINTER SCHOOL
"\

Methods for Hermitian matrix =

1. Coefficient matrix is an Hermitian matrix (A = AH)

* Conjugate Gradient (CG) method
* Conjugate Residual (CR) method
* Minimal Residual (MINRES) method

Use of Hermitian property of the coefficient
matrix enables derivation of algorithms with
short recurrence formula (low computational
complexity).

Note : Hermitian matrix
A=A = AT

(aij = aji)
j =4

13

JAPAN-KOREA HPC WINTER SCHOOL
Methods for Hermitian matrix S5
Xo 1S an 1nitial guess,
Compute ry = b — Axy,
Set Po = o,

For k=0,1,...,until ||r:, < etoLl|b||,» do :

qr = Apx, <l:< Matrix-vector multiplication
_ (re 1)
= e an) <l:{ Inner product

Xk + Qk Pk,)
<l:{ Constant times a vector plus a vector
Fiev1 = Tk — Qg

(Pks15Tk+1)
B ’

ete) <}:{ Inner product

DPi+1 = Tk+1 + BrPr <::{ Constant times a vector plus a vector
End For

Algorithm of the Conjugate Gradient (CG) method.

X+l =

14

JAPANKOREA HRC WINTER SCHOOL
Relative residual history of the CG method (@,‘;

"‘i\] 100 I 1 1 1 1 1

= i 1 | In this figure, the iteration is
= 107t 1 | stopped when the condition
] - - ~12

§ I] Irell2/lbll2 < 10

= 10° 1 | is satisfied.

R 17

7 -9

= 107" Good z

>

% 10'12 i 1 1 1 1 1 1

= 0 100 200 300

Iteration number, k

The relative residual norm ||r¢||>/||b||>is monitored during the iterations.
If the condition ||7|l2/11bll>» < eroL is satisfied, the iteration is stopped.

Then, the approximate solution x, 1s employed as the solution.
- 15 -

JAPAN-KOREA HPC WINTER SCHOOL
Methods for non-Hermitian matrix @@&a»

2. Coefficient matrix is a non-Hermitian matrix (A # A7)

Methods derived from residual bi-orthobonality condition
* Bi-Conjugate Gradient (BiCG) method
* Conjugate Gradient Squared (CGS) method
- BiCG Stabilization (BiICGSTAB) method

Computational complexity is low, but decrease of residual
norm is non-monotonic.

Methods derived from residual norm minimization condition
* Generalized Conjugate Residual (GCR) method

* Generalized Minimal Residual (GMRES) method

Residual norm decreases monotonically, but long recurrence
formula requires. 16—

JAPAN-KOREA HPC WINTER SCHOOL

Methods for non-Hermitian matrix &%

Xo 1s an initial guess,

Compute ro = b — Axy,

Choose r;, such that (r;, ro) # 0,

Set po = ro and p; = r|,

Fork=0,1,...,until ||r:|, < etoL|b|l> do :
H
qr = Ap q, = A"p;l
(r,,ry)
ap =)
(P> qr)
X+l = Xg + Qi Pils
Feel = Tk — Qi . = To—aq)
8 (Fy s Tkr1)
k= :
(r;, ri)
Dit1 = Vil + BiPiy | Py = Tiwy + BiDis
End For

Matrix-vector multiplication

Inner product

Constant times a vector plus
a vector

Algorithm of the Bi-Conjugate Gradient (BiCG) method -17-

JAPAN-KOREA HPC WINTER SCHOOL
Methods for non-Hermitian matrix &>
Xo 1s an initial guess,
Compute ryp = b — Ax,
Set pp = rp and gy = 5o = Ary,

For k=0,1,...,until ||r |, < e1oL||bl|> do :
_ (k1)
G“/k -)
(qk> qr)

Xi+1 = Xk + Pk,
Fi+1 = Fr — Qi gk,

Sk+l = AFgei,
B = (g5, Sk+1), (i=0,1,... k) ° Onematrix-vector multiplication per iteration
| (4i- qk,-) * Large computational complexity and memory
Pl = Tiy1 + Z,Bk,ipia requirement due to long recurrence formulae
r * Computational complexity and memory
Dt = Sk ;;’8 cidi requirement can be reduced by Restart

End For

Algorithm of the Generalized Conjugate Residual (GCR) method -1s-

. . JAPAN-KOREA HPC WINTER SCHOOL
Convergence properties of iterative @

methods

100 I T T T I I
1072 |

10

10°°

1078

10-10

10712

100 150 200 250 300
Iteration number, &

—
W
—

Relative residual norm, ||r||>/||b]|>

Relative residual histories of iterative methods.
—: BiCG, —:CGS, —:BiCGSTAB, —:GCR.

Method for complex symmetric

matrix

#APAN-KOREA HPC WINTER SCHOOL

0

3. Coefficient matrix is a complex symmetric matrix (A = AT = AH)

- Conjugate Orthogonal Conjugate Gradient (COCG) method

If the coefficient matrix is a complex
symmetric matrix, computation can be
performed with one matrix-vector
multiplication per iteration and a short
recurrence formula.

Note : Complex symmetric
matrix
A=A"# A"

(aij = aji # aji)

20

SAPAN-KOREA HPC WINTER SCHOOL
Method for complex symmetric

matrix

X0 1s an 1nitial guess,

0

Compute ry = b — Axy,

Set py = ro,
For k = O, 1, cees until ||I‘k||2 < 8T()L||b||2 do :
gk = Apx, <# Matrix-vector multiplication

(T, Tk)
= (Frar) <% Inner product

Xi+1 = X + QkPr,

Fivy1 = Ty — Qk{qk,
(Frs1s Tr1)

P = , <Z=— Inner product

(T Ti)
Pi+1 = Tre1 + BrPro <# Constant times a vector and plus a vector
End For

995

<# Constant times a vector and plus a vector

Algorithm of the COCG method a1

JAPAN-KOREA HPC WINTER SCHOOL

Example of sparse matrix

S

y A

2D Poisson problem 1 o0

u 0°u ,

6x2+6y2 =f, 1mQ Q

u =1, on 0Q)

f, u are given functions
O 1

Q2 1s divided into (M+1) equal parts in x, y directions and
discretized by central difference with 5-points.

X

<

We obtain a linear system with matrix of order MxM

Total number of elements in matrix : M*
Number of nonzero elements : SM? —4M

22

. JAPAN-KOREA HPC WINTER SCHOOL
Sparse matrix storage format

Compressed Row Storage (CRS) format
Search row-wise for nonzero elements

0

ay; O apy 0 aps] val stores nonzero elements of A.

0 an U axu ax col_ind stores column number of nonzero
A=|az ax a3z O 0

0 0 aq3 dyy 0
| U asp U asa ass | row_ptr stores location of first nonzero

elements of A.

element 1n each row.

val: |aii|az|ais|ax|ara|azs|as|asz|ass|aas|aaa|asy|asa|ass

col_ind: [1 |3 |S5|214|S5|1]12|3|314|2]4]35

row ptr: |1 |47 110] 12| 15 The last entry 1s the number
of nonzero elements + 1 -

. JAPAN-KOREA HPC WINTER SCHOOL
Sparse matrix storage format

0

Compressed Column Storage (CCS) format
Search column-wise for nonzero elements

‘a;; 0 apz U aps val stores nonzero elements of A.

0 ax 0O a4 a row_ind stores row number of nonzero
A=|az axn ax| ' U

)) aq3 dygq)
| U asp U |@s4as55 1 col_ptr stores location of first nonzero

elements of A.

element in each column.

val: |aj|az1|ax|asz|asa|az|ass|aas |a@zalaaa|asalais|azs|ass

row_ind: | 1 |3 2|3 |5|1|3|412|4|5]|1]|2]5

The last entry 1s the number

col ptr: |1 |3]1619] 12| 15
of nonzero elements + 1. -

JAPAN-KOREA HPC WINTER SCHOOL

Multiplication of matrix A and vector x for y =Ax

Cyvi] [an a2 ... ap || x|
Y2 d; dyp ... dp X2
. Vn | | dpl an Apn 1L Xn |

Fortran Code

0.0DO0

Matrix-vector multiplication CRS format @

25

JABANKOREA HRC WINTER SCHOOL
Matrix-vector multiplication CCS format <’$\>

Multiplication of matrix A and vector x for y =Ax

x|
X2 n
y=laiax...,a,]| . |=) ax

L Xn

Fortran Code

do 1=1,n
y(i) = 0.0DO
end do
do j=1,n
do i=col ptr(j), col ptr(j+1l)-1
y(row ind(1i)) = y(row ind(i)) + val(1i)
end do

end do

* x(3J)

26

JAPAN-KOREA HPC WINTER SCHOOL
Parallelization of matrix-vector

multiplication
* y=Ax in CRS format

@

Proc. 0
Proc. 1
sk —
Proc. 2
Proc. 3
A X Yy
x is stored in all Gather to Proc. 0

processes by MPI_Gather

27

JAPAN-KOREA HPC WINTER SCHOOL
Parallelization of matrix-vector

multiplication
* y=Ax in CCS format

@

& — (g@\| e
8 8 8 8 K — + + +
= = = =
A al A al
A X Yy

Sum results by MPI_Reduce

and send to Proc. 0 e

JAPAN-KOREA HPC WINTER SCHOOL
Parallelization of inner products &3

(x,9) =Y Xy
=1

Proc. 0 Proc. 1 Proc. 2 Proc. 3

tmp sum tmp sum tmp sum tmp sum

N\

sum
Gather to Proc. 0 by MPI_Reduce

29

JAPAN-KOREA HPC WINTER SCHOOL

Example of MPI code

n
program main (x,y) = ¥
include 'mpif.h’ Y Jz:‘{ 2g

0

call mpi init(ierr)
call mpi comm size(mpi comm world, npu, ierr)
call mpi comm rank(mpi comm world, mype, lerr)
tmp sum = (0.0D0, 0.0DO)
do i=istart(mype+l), iend(mype+l)
tmp sum = tmp sum + conj(x(i)) * y(1i)
end do
call mpi reduce(tmp sum, sum, 1, mpi double complex,
mpi sum, 0, mpi comm world, ierr)

call mpi finalize(ierr)

30

Parallelization of constant times """ 220

a vector plus a vector

0

y=y+ax, a:scalar, x,y: vector.

Send a scalar «a to all processes by MPI_Bcast

Proc. 0 Proc. 1 Proc. 2 Proc. 3

a MPI Bcast

a a a a

X X X X
X

+ + + +

JAPAN-KOREA HPC WINTER SCHOOL

Preconditioning of linear systems (&5

In Krylov subspace methods, the residual sometimes fails to converge

Characteristics of Krylov subspace methods

If the coefficient matrix is close to an identity matrix,
the residual converges in a small number of iterations

Linear system
Ax=b

Preconditioning>

Preconditioned linear system
A/ / = bl

Transformation to a coefficient matrix A’
that is close to the identity matrix /!

32

JAPAN-KOREA HPC WINTER SCHOOL
Preconditioning of linear systems (&5

Coefficient matrix A approximation preconditioning

A~ KK, K{'AK;' = I
|

Ax = b < (K;'AK; ") (Kyx) = K7'b

Inverse matrix A-! approximation preconditioning
AxM' =AM =~I, MA~ 1

y
Ax =b & MAx = Mb

or Ax=b < (AM)M 'x)=b

33

. . JAPAN-KOREA HPC WINTER SCHOOL
Sparse approximate inverse

preconditioning

Generate an approximate inverse matrix M

0

Determine M such that mA}n 1 — AM||;

n
2 2
11— AMIIE =) lle; — Am;ll;
j=1
* Nonzero structure of M can be arbitrary selected
* If M is a dense matrix, then we have M = A}

1) n least square problems need to be solved. Note : Frobenius norm

2) We can solve these problems in parallel 1Al
e

2
I)C T em re 1 ndepen l a;;

34

C()nvergence pl’Operty Of JAPAN-KOREA HPC WINTER SCHOOL

S>
o 0 ° ° \J
preconditioned iterative methods

.ﬁ 10° | . .

= 10° i

% 107

§ 10 | i

2 10f 1

S I _

S 10° L -

S 10 [Good :

o 107 J L]

Eﬁ 107 0 100 200 300 400

Iteration number, £

Relative residual histories of iterative methods.

— : BiCG, —:BiCC with sparse approximate inverse preconditioning
—_ 35 —_

JAPAN-KOREA HPC WINTER SCHOOL

0

Methods for linear systems
with multiple right-hand sides
AX =B

Linear systems with multiple right-thlAi%N' REAHPCTSCHOOL
C ‘,}

sides

- Linear systems with L right-hand sides ~N
AX=B
where, A 1s a matrix of order n and
X = [x0,x®, D] B= (D52, pD]

- J

Solution by Direct methods
* Complete factorization (e.g., A = LU) of the matrix A is required.
- If complete factorization is possible, then we can solve the system
by L forward and backward substitutions.
* Large computational complexity and memory usage are required

for complete factorization.

37

JAPAN-KOREA HPC WINTER SCHOOL

Block Krylov subspace methods (&

Types of Block Krylov subspace methods

4 I
* Block BiCG O’Leary (1980)
* Block GMRES Vital (1990)
* Block QMR Freund (1997)
- Block BiCGSTAB Guennouni (2003)
k' Block BiCGGR Tadano (2009) Y

We can efficiently obtain solution vectors by using
Block Krylov subspace methods.

38

JAPAN-KOREA HPC WINTER SCHOOL

Block Krylov subspace methods (&

What is the meaning of “good efficiency” ?

j> Residual may converge in fewer iterations than Krylov
subspace methods for single right-hand side.

10! |
§ 1072
= i
S 10° |
= L
8 B
=100 |
2z B
% 10! - Good
~ L

10'14 i] |]]
0 500 1000 1500 2000

Iteration number

Relatrive residual histories of the Block BICGSTAB methods.
M:L=1, B:L=2 W :L=4

39

Block BiCGSTAB

JAPAN-KOREA HPC WINTER SCHOOL

0

Xo € C™L is an initial guess,

Compute Ry = B - AX,

Set Py = Ry,

Choose Ry € C™L,

For k=0,1,...,until |R||r < €||B|r do:

Vi = APy,

Solve (R Vi)ax = Ry Ry for ay,
Iy = Ry — Vi,
Z, = ATy,

G = Te|ZBT | /Tr |20z,
Xiv1 = Xi + Prag + &1y,
Riv1 = T — G2y,
Solve (R Vi)B = —R{ Z, for B,
Pry1 = Riwr + (Pr — G VidBr

Differences from BiCGSTAB

. Number of matrix-vector mult.

increases from 1 to L.

. oy and B, become matrices of

order L.

. Computation of constatnt times
vector becomes matrix-matrix mult..

. To compute g, matrix trace Tr[]

becomes necessary.

Trace: Sum of diagonal elements.

End

40

JAPAN-KOREA HPC WINTER SCHOOL
Efficient matrix-vector multiplication <Sf'\>

* Let the matrix A be stored in CRS format.
* Compute Y = AX. Y and X are n-row L-column arrays.

do k=1,L

do i=1,n
do j=row ptr(i), row ptr(i+l)-1
Y(1,k)=Y(1i,k)+A(]J)*X(col ind(]),k)
end do

end do

end do

| Problems |

* Continuous memory access for X 1s not available.

(In Fortran, arrays are stored in column major order.)

* Coefficient matrix data must be read L times from memory. _,, _

JAPAN-KOREA HPC WINTER SCHOOL
[J [J _ [J [J [] ’
Efficient matrix-vector multiplication <Sf'\>

[Solution strategy |
* We store X and Y in transposed form. (L-row n-column array).

do i=1,n
do j=row ptr(i), row ptr(i+l)-1
do k=1,L
Y(k,1)=Y(k,i)+A(J)*X(k,col ind (7))
end do
end do
end do

- Continuous access (at least L times) can be provided for X.
* Matrix data are read in just once from memory.

* Continuous access can also be provided for Y. o

Computation of nxL matrix by
LxL matrix multiplication

* The vectors are transposed, for efficient matrix-vector multiplication.

JAPAN-KOREA HPC WINTER SCHOOL

0

* Some device is also necessary to compute nxL by LxL matrix mult..

Transposition

Tk =Rk — Vkak |:> TT :Rg —CL’EV];F

do j=1,n

do i=1,L
T(i,J)=R(1i,3])
end do

end do

do j=1,n

do i=1,L
do k=1,L

T(k,j)=T(k,j)— Alpha(k,i)*V(i,j)

end do
end do
end do

The matrix Alpha is
transposed in advance.

Continuous access 1s enabled by

transposing.

43

Computation of Lxn matrix by /AHOEHCINE 0

nxL matrix multiplication

* This computation is required to compute ¢, and f,.

0

* Let us consider the computation of Cy = Rg Vi.

do j=1,n

do 1i=1,L
do k=1,L
C(k,i)=C(k,i)+RO(k,J)*V(i,J)
end do

end do

end do

* We can also maintain continuous memory access in computation of C,.

44

JAPAN-KOREA HPC WINTER SCHOOL
Parallelization with OpenMP S

* Parallelization interface for shared memory.

* Parallelization can be obtained simply by adding a few lines to the
exist program.

!1SOMP PARALLEL
| program |
1SOMP END PARALLEL

Writing as above enables thread start and separate processing
in each thread.
(We assume that the following codes are enclosed by
1SOMP PARALLEL and ! SOMP END PARALLEL directives.)

45

JAPAN-KOREA HPC WINTER SCHOOL

Parallelization with OpenMP S

1. Parallelization of matrix-vector multiplication

1SOMP DO PRIVATE(j,k)

do i1=1,n

do j=row ptr(i), row ptr(i+l)-1
do k=1,L
Y(k,1)=Y(k,i)+A(j)*X(k,col ind(j))
end do

end do

end do

Simply add ! SOMP DO before the first do loop.

46

Parallelization with OpenMP

JAPAN-KOREA HPC WINTER SCHOOL

S

2. Parallelization of nxL matrix by LxL matrix multiplication

1SOMP DO PRIVATE (1)
do j=1,n
do i=1,L
T(1,J)=R(1i,7)
end do
end do
1SOMP DO PRIVATE(i,k)
do j=1,n
do i=1,L
do k=1,L

end do
end do
end do

T(k,j)=T(k,j)— Alpha(k,i)*V(i,j)

Simply add two lines for parallelization.

47

JAPAN-KOREA HPC WINTER SCHOOL

Parallelization with OpenMP =

3. Parallelization of Lxn matrix by nxL matrix multiplication

Execute the following at the beginning of the code

NTH = OMP_GET NUM THREADS ()
MYID = OMP_GET THREAD NUM()+1
1 $OMP SINGLE

allocate(TMP(L,L,NTH))
1$OMP END SINGLE

NTH : Number of threads
MYID : Thread number

TMP : Temporary array for parallel computation

48

JAPAN-KOREA HPC WINTER SCHOOL

Parallelization with OpenMP

Then, execute the following code to compute C; = I?IO{ V.

S>

! SOMP DO PRIVATE(i,k,MYID)
do j=1,n
do i=1,L
do k=1,L
TMP(k,1i,MYID) = TMP(k,i,MYID)+RO(k,j)*V(i,])
end do
end do
end do
! SOMP BARRIER
! SOMP SINGLE

array reduction processing.
1$SOMP END SINGLE y on pro g

do k=1,NTH
do j=1,L
do i=1,L
C(i,J) = C(i,3) + TMP(i,],k)
end do
end do By using this code, we can execute
end do

49

Performance of Matrix-vector

multiplication

70.0 B | 1 1 1 I I

—eo— Efficient implementation
60.0

—eo— Naive implementation

500 -
40.0 -
300
200 - ::: : :

10.0 -

0.0 | | | | |

GFLOPS

0 2 4 6 8 10 12
Number of right-hand sides, L

Relation between GFLOPS count, peak performance ratio and #RHS L.

50

40

30

20

10

—

Matrix size : 1,572,864, #nonzero elements : 80,216,064,
Experimental environment : 1 node of T2K-Tsukuba (Peak : 147.2 GFLOPS)

CPU : AMD Opteron 2.3GHz x 4. Parallelization : 4 OpenMP x 4 MPI.

JAPAN-KOREA HPC WINTER SCHOOL

[2,] onea dduewioy1ad yeaq

0

JAPAN-KOREA HPC WINTER SCHOOL

Parallelization with OpenMP

S5

[Test linear system]
Size : 1,572,864

#right-hand sides : 4

#nonzero elements : 80,216,064

This linear system derived from
Quantum Chromodynamics (QCD).

[Computing environment |

CPU: Intel Xeon X5550 2.67GHz x 2

Mem: 48GBytes
OS: CentOS 5.3
Compiler . Intel Fortran ver. 11.1

Option - —-fast -openmp

#Threads | Time [sec] (#1terations) | Time / #Iterations Speedup
1 303.49 (179) 1.6955 1.00
2 183.07 (179) 1.0227 1.66
3 138.07 (179) 0.7713 2.20
4 104.61 (181) 0.5749 2.95
5 80 57 (181) 0.4451 3.81
6 78.56 (181) 0.4340 391
7 74.96 (181) 04141 4.09
8 68.18 (181) 0.3767 4.50

-

51

JAPAN-KOREA HPC WINTER SCHOOL
Summary

0

In this lecture, we have considered in particular
* Krylov subspace methods for solving linear systems.
* Methods of implementing and parallelizing matrix-
vector multiplication for sparse matrices.
* Block Krylov subspace methods, code optimization,

and parallelization with OpenMP.

52

