
1

OpenMP
　Parallel Programming for Multicore

processors	

M. Sato
CCS, University of Tsukuba	

2

Contents	

n  Why multicore?　～　Trends of Microprocessors	

n  How to use multicore	

n  POSIX Thread

	

n  OpenMP
n  Programming models

n  Advanced Topics
n  Hybrid Programming for Muticore clusters
n  OpenMP 3.0　(task)　
n  OpenMP 4.0 (Accelerator extension)	

3

How to make computer fast?	

n  Computer became faster and faster by	

n  Device	

n  Computer architecture	

n  Computer architecture to perform processing in
parallel at several levels:	

n  Inside of CPU (core)	

n  Inside of Chip	

n  Between chips	

n  Between computer	

Pipeline
Superscalar	
	

mulitcore	
	

Shared memory
multiprocessor	
	

Distributed memory
computer or Grid	
	

4

Trends of Mulitcore processors	

n  Faster clock speed, and Finer silicon technology	

n  “now clock freq is 3GHz, in future it will reach to

10GHz!?”	

n  Intel changed their strategy -> multicore!	

n  Clock never become faster any more	

n  Silicon technology 45 nm -> 22 nm in near future!
	

n  Progress in Computer Architecture	

n  Superpipeline, super scalar, VLIW …
n  Multi-level cache, L3 cache even in microprocessor	

n  Multi-thread architecure、Intel Hyperthreading

n  Shared by multiple threads	

n  Multi-core： multiple CPU core on one chip dai	

Inetl ® Pentium® processor	
	

Dai of Extreme-edition	
	

Good news & bad news!

Programming support is required	

5

Why parallelization needs? 
4 times speedup by using 4 cores!	

6

Overhead of parallel execution	

If comm or
Sync is required	

Loads of each
proc

is different	

7

Shared memory multi-processor system	

CPU CPU CPU CPU

ＭＥＭ

BUS

u Multiple CPUs share
main memory	
	

u Threads executed in
each core(CPU)
communicate with
each other by
accessing shared data
in main memory.	
	

u Enterprise Server	
	

u SMP Multi-core

processors	
	

8

Distributed memory multi-processor	

CPU CPU

CPU CPU

MEM

MEM MEM

MEM

Network

u System with several
computer of CPU and
memory, connected by
network.	
	

u Thread executed in each
computer communicate
with each other by
exchanging data
(message) via network.タタ	
	

u PC Cluster	
	

9

Very simple example of parallel computing	

for(i=0;i<1000; i++)
 S += A[i]

1 2 3 4 1000

+ S

1 2 1000 250 251 500 501 750 751

+ + + +

+ S

Sequential computation	
 	

Parallel computation	
 	

Processor１１	
 	
 Processor ２２	
 	
 ププProcessor ３３	
 	
 Processor ４４	
 	

10

Parallel programming model	

n  Message passing programming model
n  Parallel programming by exchange data (message) between processors

(nodes)	

n  Mainly for distributed memory system (possible also for shared memory)
n  Program must control the data transfer explicitly.	

n  Programming is sometimes difficult and time-consuming	

n  Program may be scalable (when increasing number of Proc)	

n  Shared memory programming model
n  Parallel programming by accessing shared data in memory.	

n  Mainly for shared memory system. (can be supported by software

distributed shared memory)
n  System moves shared data between nodes (by sharing)	

n  Easy to program, based on sequential version	

n  Scalability is limited. Medium scale multiprocessors.	

11

Parallel programming models	

12

Multithread(ed) programming	

n  Basic model for shared memory	

n  Thread of execution = abstraction of execution in processors.	

n  Different from process	

n  Procss = thread + memory space 	

n  POSIX thread library = pthread
Many programs are
executed in parallel	
	

ススレレッッドド	
	

13

POSIX thread library	

n  Create thread: thread_create
n  Join threads: pthread_join
n  Synchronization, lock	

　　

　　	

#include <pthread.h>

void func1(int x);　 void func2(int x);

main() {
 pthread_t t1 ;
 pthread_t t2 ;
 pthread_create(&t1, NULL,
 (void *)func1, (void *)1);
 pthread_create(&t2, NULL,
 (void *)func2, (void *)2);
 printf("main()\n");
 pthread_join(t1, NULL);
 pthread_join(t2, NULL);
}
void func1(int x) {
 int i ;
 for(i = 0 ; i<3 ; i++) {
 printf("func1(%d): %d \n",x, i);
 }
}
void func2(int x) {
 printf("func2(%d): %d \n",x);
}
	

main

func1
func2

pthread_create

pthread_join

pthread_create

pthread_join

14

Programming using POSIX thread	

n  Create threads	

for(t=1;t<n_thd;t++){
 r=pthread_create(thd_main,t)
}
thd_main(0);
for(t=1; t<n_thd;t++)

 pthread_join();

Pthread, Solaris thread

n  Divide and assign iterations of loop 	

n  Synchronization for sum	

int s; /* global */
int n_thd; /* number of threads */
int thd_main(int id)
{ int c,b,e,i,ss;
 c=1000/n_thd;
 b=c*id;
 e=s+c;
 ss=0;
 for(i=b; i<e; i++) ss += a[i];
 pthread_lock();
 s += ss;
 pthread_unlock();
 return s;
}

Thread ＝	

Execution of program	

15

Simple example of Message Passing Programming	

n  Sum up 1000 element in array	

int a[250]; /* 250 elements are allocated in each node **/

main(){ /* start main in each node　　**/
 int i,s,ss;
 s=0;
 for(i=0; i<250;i++) s+= a[i]; /*compute local sum**/
 if(myid == 0){ /* if processor 0　　**/

 for(proc=1;proc<4; proc++){
 recv(&ss,proc); /* receive data from others**/
 s+=ss; /*add local sum to sum**/
 }
 } else {　　　　/* if processor 1,2,3　　**/
 send(s,0); /* send local sum to processor 0　　**/
 }
}

16

Parallel programming using MPI	

n  MPI (Message Passing Interface)
n  Mainly, for High performance scientific computing	

n  Standard library for message passing parallel programming in high-end
distributed memory systems.	

n  Required in case of system with
 more than 100 nodes.	

n  Not easy and time-consuming work	

n  “assembly programming” in distributed
 programming	

n  Communication with message	

n  Send/Receive

n  Collective operations	

n  Reduce/Bcast
n  Gather/Scatter	

Over-specs for
Embedded system

Programming?!	

ネットワーク

Send Receive

17

Programming in MPI	

#include "mpi.h"
#include <stdio.h>
#define MY_TAG 100
double A[1000/N_PE];
int main(int argc, char *argv[])
{
 int n, myid, numprocs, i;
 double sum, x;
 int namelen;
 char processor_name[MPI_MAX_PROCESSOR_NAME];
 MPI_Status status;

 MPI_Init(&argc,&argv);
 MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
 MPI_Comm_rank(MPI_COMM_WORLD,&myid);
 MPI_Get_processor_name(processor_name,&namelen);
 fprintf(stderr,"Process %d on %s\n", myid, processor_name);

18

Programming in MPI	

	
	

 sum = 0.0;
 for (i = 0; i < 1000/N_PE; i++){

 sum+ = A[i];
 }

 if(myid == 0){

 for(i = 1; i < numprocs; i++){
 MPI_Recv(&t,1,MPI_DOUBLE,i,MY_TAG,MPI_COMM_WORLD,&status

 sum += t;
 }
 } else
 MPI_Send(&t,1,MPI_DOUBLE,0,MY_TAG,MPI_COMM_WORLD);
 /* MPI_Reduce(&sum, &sum, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM
　　　　　　　　MPI_Barrier(MPI_COMM_WORLD);
 ...
 MPI_Finalize();
 return 0;
}
	
	

19

What’s OpenMP?	

n  Programming model and API for shared memory parallel programming	

n  It is not a brand-new language.	

n  Base-languages(Fortran/C/C++) are extended for parallel programming

by directives.	

n  Main target area is scientific application.	

n  Getting popular as a programming model for shared memory processors

as multi-processor and multi-core processor appears.	

n  OpenMP Architecture Review Board　(ARB) decides spec.	

n  Initial members were from ISV compiler venders in US.	

n  Oct. 1997 Fortran ver.1.0 API
n  Oct. 1998 C/C++ ver.1.0 API
n  Latest version, OpenMP 3.0

n  http://www.openmp.org/

20

Programming using POSIX thread	

n  Create threads	

for(t=1;t<n_thd;t++){
 r=pthread_create(thd_main,t)
}
thd_main(0);
for(t=1; t<n_thd;t++)

 pthread_join();

Pthread, Solaris thread

n  Divide and assign iterations of loop 	

n  Synchronization for sum	

int s; /* global */
int n_thd; /* number of threads */
int thd_main(int id)
{ int c,b,e,i,ss;
 c=1000/n_thd;
 b=c*id;
 e=s+c;
 ss=0;
 for(i=b; i<e; i++) ss += a[i];
 pthread_lock();
 s += ss;
 pthread_unlock();
 return s;
}

Thread ＝	

Execution of program	

21

Programming in OpenMP	

#pragma omp parallel for reduction(+:s)
 for(i=0; i<1000;i++) s+= a[i];

ここれれだだけけでで、、OK!

22

OpenMP API

n  It is not a new language! 	

n  Base languages are extended by compiler directives/pragma, runtime

library, environment variable.	

n  Base languages：Fortran 90, C, C++

n  Fortran： directive line starting with !$OMP	

n  C: directive by #pragma omp 	

n  Different from automatic parallelization	

n  OpenMP parallel execution model is defined explicitly by a programmer.	

n  If directives are ignored (removed), the OpenMP program can be
executed as a sequential program	

n  Can be parallelized in incrementally	

n  Practical approach with respect to program development and debugging.	

n  Can be maintained as a same source program for both sequential and

parallel version.	

23

OpenMP Execution model 	

n  Start from sequential execution	

n  Fork-join Model	

n  parallel region

n  Duplicated execution even in function calls	

	
 	
 … A ...
#pragma omp parallel
{
 foo(); /* ..B... */
}
… C ….
#pragma omp parallel
{
… D …
}
… E ...

Call foo() Call foo() Call foo() Call foo()

A

B

C

D

E

fork

join

24

Parallel Region

n  A code region executed in parallel by multiple threads (team)	

n  Specified by Parallel constructs	

n  A set of threads executing the same parallel region is called “team”	

n  Threads in team execute the same code in region (duplicated

execution)	

#pragma omp parallel
{
 ...
 ... Parallel region...
 ...
}

25

Demo	

n  Get CPU information by looking at /proc/cpuinfo
n  gcc –fopenmp, gcc support OpenMP from 4.2, gfortran	

n  Control #proessors by OMP_NUM_THREADS	

#include <omp.h>
#include <stdio.h>

main()
{
 printf("omp-test ... n_thread=%d\n",omp_get_max_threads());
#pragma omp parallel
 {

 printf("thread (%d/%d)...\n",
 omp_get_thread_num(),omp_get_num_threads());

 }
 printf("end...\n");
}

26

Work sharing Constructs	

n  Specify how to share the execution within a team	

n  Used in parallel region	

n  for Construct	

n  Assign iterations for each threads	

n  For data parallel program	

n  Sections Construct	

n  Execute each section by different threads	

n  For task-parallelism	

n  Single Construct	

n  Execute statements by only one thread	

n  Combined Construct with parallel directive	

n  parallel for Construct	

n  parallel sections Construct	

directives
work-sharing, sync

Duplicated execution

thread1 thread2 thread3

27

For Construct	

n  Execute iterations specified For-loop in parallel	

n  For-loop specified by the directive must be in canonical shape

n  Var must be loop variable of integer or pointer(automatically private)	

n  incr-expr

n  ++var,var++,--var,var--,var+=incr,var-=incr
n  logical-op

n  ＜、＜＝、＞、＞＝	

n  Jump to ouside loop or break are not allows	

n  Scheduling method and data attributes are specified in clause	

#pragma omp for [clause…]
 for(var=lb; var logical-op ub; incr-expr)
 body

28

Example: matrix-vector product	

29

The performance looks like …	

30

Example code	

Matvec(double a[],int row_start,int col_idx[],
 double x[],double y[],int n)
{
 int i,j,start,end; double t;
#pragma omp parallel for private(j,t,start,end)
 for(i=0; i<n;i++){
 start=row_start[i];
 end=row_start[i+1];
 t = 0.0;
 for(j=start;j<end;j++)
 t += a[j]*x[col_idx[j]];
 y[i]=t;
 }
}

Sparse matrix vector product	
 	

X y

a[col_idx[j]]

A

a

31

Scheduling methods of parallel loop	

n  #processor = 4	

Sequential	
	

schedule(static,n)

Schedule(static)

Schedule(dynamic,n)

Schedule(guided,n)

n Iteration space

32

Data scope attribute clause	

n  Clause specified with parallelconsruct、work sharing
construct	

n  shared(var_list)
n  Specified variables are shared among threads.	

n  private(var_list)
n  Specified variables replicated as a private variable

n  firstprivate(var_list)
n  Same as private, but initialized by value before loop.	

n  lastprivate(var_list)
n  Same as private, but the value after loop is updated by the value of

the last iteration.	

n  reduction(op:var_list)
n  Specify the value of variables computed by reduction operation op.	

n  Private during execution of loop, and updated at the end of loop	

33

Data Race

Data Race =
Write a same variable by

different threads	

OpenMP
Is shared
Memory!	

34

You cannot parallelize this loop	

35

Barrier directive	

n  Sync team by barrier synchronization	

n  Wait until all threads in the team reached to the barrier point.	

n  Memory write operation to shared memory is completed (flush) at the

barrier point.	

n  Implicit barrier operation is performed at the end of parallel region, work

sharing construct without nowait clause	

#pragma omp barrier

36

Barrier is important in this case	

You don’t need to put barrier directive
Because for directive without nowait performs implicit barrier.	

37

How to use nowait	

38

Other directives	

n  Single construct：　to specify a region executed by
one thread.	

n  Master construct: to specify a region executed by
master thread.

n  Section construct: to specify regions executed by
different threads (task parallelism)	

n  Critical construct： to specify critical region executed
exclusively between threads	

n  Flush construct	

n  Threadprivate construct	

39 Lecture on Programming Environment

Example of OpenMP program：laplace

n  Explicit solver of Laplace equation	

n  Stencil operation: update value with 4-points of up/down/left/right.	

n  Use array of “old” and “new”. Compute new by old and replace old

with new.	

n  Typical parallelization by domain decomposition
n  At each iteration, compute residual	

n  OpenMP version: lap.c
n  Parallelize 3 loops 	

n  OpenMP support only loop
 parallelization of outer loop.	

n  For loop directive is orphan, in dynamic extent of parallel directive.	

40

void lap_solve()
{
 int x,y,k;
 double sum;

#pragma omp parallel private(k,x,y)
{
 for(k = 0; k < NITER; k++){

 /* old <- new */
#pragma omp for

 for(x = 1; x <= XSIZE; x++)
 for(y = 1; y <= YSIZE; y++)
 uu[x][y] = u[x][y];
 /* update */

#pragma omp for
 for(x = 1; x <= XSIZE; x++)
 for(y = 1; y <= YSIZE; y++)
 u[x][y] = (uu[x-1][y] + uu[x+1][y] + uu[x][y-1] + uu[x][y+1])/4.0;

 }
 }

/* check sum */
 sum = 0.0;
#pragma omp parallel for private(y) reduction(+:sum)
 for(x = 1; x <= XSIZE; x++)

 for(y = 1; y <= YSIZE; y++)
 sum += (uu[x][y]-u[x][y]);

 printf("sum = %g\n",sum);
}

41 Lecture on Programming Environment

What about performance?	

n  OpenMP really speedup my problem?!

n  It depends on hardware and problem size/characteristics

n  Esp. problem sizes is an very important factor	

n  Trade off between overhead of parallelization and grain size of parallel

execution.	

n  To understand performance, …
n  How to lock	

n  How to exploit cache	

n  Memory bandwidth	

42

Laplace performance	

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12

Exec time	

speedup	

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 2 4 6 8 10 12

AMD Opteron quad , 2 socket
XSIZE=YSIZE=1000

Exec time	

speedup	

	

XSIZE=YSIZE=8000

0

10

20

30

40

50

60

70

0 2 4 6 8 10 12

0

0.5

1

1.5

2

2.5

0 2 4 6 8 10 12

43

Laplace performance	

Exec time	

speedup	

Core i7 920 @ 2.67GHz, 2 socket
XSIZE=YSIZE=1000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 2 4 6 8 10 12

0

0.5

1

1.5

2

2.5

3

0 2 4 6 8 10 12

0

5

10

15

20

25

30

35

0 2 4 6 8 10 12

Exec time	

speedup	

XSIZE=YSIZE=8000

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 2 4 6 8 10 12

44

45

CC-NUMA and first touch

46

First touch	

2 socket Nehalem

47

Advanced topics

n  MPI/OpenMP Hybrid Programming
n  Programming for SMP (multicore) cluster

n  OpenMP 3.0
n  Approved in 2007
n  Task

n  OpenMP 4.0
n  Approved in 2013
n  Accelerator device extension	

48

MPI-OpenMP hybrid programming
How to use multi-core cluster	

n  Flat MPI: Run MPI process in core
(CPU)
n  Many MPI processes
n  Only MPI programming is needed

n  MPI-OpenMP hybrid
n  Use MPI between nodes
n  Use OpenMP in node
n  Save number of MPI process, resulting

in saving memory. Important in large-
scale system

n  Cost: Need two (MPI-OpenMP)
programming	

n  Sometimes OpenMP performance is worse
than MPI

CPU CPU

CPU CPU

MEM

MEM MEM

MEM

Network

CPU CPU CPU CPU

ＭＥＭ

BUS

CPU	

CPU	

CPU	

CPU	

CPU	

CPU	

CPU	

CPU	

CPU	

CPU	

CPU	

CPU	

CPU	

CPU	

CPU	

CPU	

node	

49

Thread-safety of MPI

n  Use MPI_ MPI_Init_thread to get info about thread-safety

n  MPI_THREAD_SINGLE
n  A process has only one thread of execution.

n  MPI_THREAD_FUNNELED
n  A process may be multithreaded, but only the thread that initialized MPI

can make MPI calls.

n  MPI_THREAD_SERIALIZED
n  A process may be multithreaded, but only one thread at a time can make

MPI calls.

n  MPI_THREAD_MULTIPLE
n  A process may be multithreaded and multiple threads can call MPI

functions simultaneously.

50 Lecture on Programming Environment

Update in OpenMP3.0	

n  The concept of “task” is introduced:	

n  An entity of thread created by Parallel construct and Task construct.	

n  Task Construct & Taskwait construct	

n  Interpretation of shared memory consistency in OpenMP	

n  Definition of Flush semantics	

n  Nested loop	

n  Collapse clauses	

n  Specify stack size of thread.	

n  constructor, destructor of private variables in C++	

51 Lecture on Programming Environment

Example of Task Constructs	

struct node {
 struct node *left;
 struct node *right;

};

void postorder_traverse(struct node *p) {

 if (p->left)
 #pragma omp task // p is firstprivate by default
 postorder_traverse(p->left);
 if (p->right)
 #pragma omp task // p is firstprivate by default
 postorder_traverse(p->right);
 #pragma omp taskwait
 process(p);

}

52

Task Construct	

Must be in parallel construct	

OpenMP 4.0
n  Released July 2013

n  http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
n  A document of examples is expected to release soon

n  Changes from 3.1 to 4.0 (Appendix E.1):
n  Accelerator: 2.9
n  SIMD extensions: 2.8
n  Places and thread affinity: 2.5.2, 4.5
n  Taskgroup and dependent tasks: 2.12.5, 2.11
n  Error handling: 2.13
n  User-defined reductions: 2.15
n  Sequentially consistent atomics: 2.12.6
n  Fortran 2003 support

53
slide by Yonghong@UH	

Accelerator (2.9): offloading

n  Execution Model: Offload data
and code to accelerator

n  target construct creates tasks
to be executed by devices

n  Aims to work with wide variety
of accs
n  GPGPUs, MIC, DSP, FPGA, etc
n  A target could be even a remote

node, intentionally

54

Main
Memory

Application
data

target

Application
data

acc. cores

Copy in
remote
data

Copy out
remote data

Tasks
offloaded to
accelerator

#pragma omp target
{

 /* it is like a new task
 * executed on a remote device */

{

slide by Yonghong@UH	

target and map examples

55 slide by Yonghong@UH	

56

Final comments	

n  Parallelization is a must in multicore!

n  OpenMP provide easy way to parallelize from sequential
code.

n  It is good way up to 64 processors.
n  Easy way to use multi-core processor.⇒ now, can be

applied to accelerator devices such as GPU and DSP.

n  OpenMP is sometime not scalable. MPI is preferable
beyond 100 processors.
n  MPI programming is not easy, like OpenMP.
n  Hybrid programming may be required in a large-scale system.

