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•Protein Folding Problem: Why is it so difficult to solve it by computation? 
•Protein Structure 3D Modeling: Physics-Based vs. Informatics-Based 
•High-Accuracy Protein Modeling by Global Optimization: 
 -- CASP 7/8/9/10 
•Accurate Protein 3D Modeling  Better Understanding of Biology? 



Global Optimization 

• Many problems in science and engineering are 
optimization problems. 

• Efficient acquisition of  the ground state and low-lying 
excitations is often sufficient to understand the 
essence of the problem. 

• “Prediction” followed by “experimental validation” is 
one area where collaboration between theory and 
experiments can be most successful. 

• Generation of more consistent models with 
experiments by directly optimizing a restraint function 
is another area where computation can contribute in 
many fields  X-ray and NMR protein structure 
“determination”. 
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Traveling Salesman Problem  

•For given dij, find the path of the shortest tour length 
•Total # of non-degenerate paths: (n-1)!/2  
•mathematically well-defined problem 

•TSP with erroneous dij    protein folding 
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Protein Structure Prediction 
 

1. Physics-based approaches: Principle-based modeling  
① Accurate potential energy function 
② Powerful global optimization method  what we can 

do better than others 
③ Ab initio, de novo, new fold targets (10-20%) 

2. Informatics-based approaches: Template-based modeling 
① Map the original problem to a problem with solution 
 mapping problem (alignment problem) 

② Use templates (problems with solutions) to obtain the 
solution of the original problem (multiple alignment) 

③ Comparative modeling, fold recognition (80-90%) 
 



Narrows the search  
while maintaining diversity of 

sampling. 

Annealing in conformational 
space”. 

 
Conformational Space Annealing 

J Comput Chem 18 1222 (1997) 
Phys Rev Lett 91 080201 (2003) 
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Schematic diagram to illustrate the procedure to update the bank conformations with 
a trial conformation α. The bank conformations (of size 5 in this example) are 
labeled with capital letters. First, by measuring all the distances between the trial 
conformation α and the bank conformations A, B, C, D, and E,  find the closest 
conformation A (to α) at a distance DαA. The procedure to update the bank depends 
on the relative size of DαA and Dcut. If DαA < Dcut (with the larger size of Dcut shown 
in the figure) α replaces A if, in addition, α is lower in energy than A. However, if 
DαA > Dcut (with the smaller size of Dcut shown in the figure) α replaces B, the 
highest energy (most unfit) conformation in the bank, if α, in addition, is lower in 
energy than B. If α does not satisfy the “lower in energy” condition in either of the 
two cases,  α is discarded.  
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(φ, ψ) map of the Leu-13 
residue of the 20-residue 
membrane-bound portion 
of melittin. In this peptide 
the Leu-13 residue 
precedes Pro-14. (113 
variable angles) 
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Selected examples of successful optimization 
• Optimization of ECEPP/3 for a 20-residue membrane-bound portion of melittin [Biopolymers 46, 

103-115 (1998)]  
• Unbiased global optimization of Lennard Jones clusters up to N =201 [Phys Rev Lett 91, 080201 

(2003)] 
• Ground state in the frustrated XY model and lattice coulomb gas with f =1/6 [Physica A 315 314-320 

(2002)] 
• Conformational space annealing and an off-lattice frustrated model protein [J Chem Phys 119 10274-

10279 (2003)] 
• Structure optimization of an off-lattice AB protein model [Phys Rev E 72 011916 (2005), Submitted] 
• Efficient molecular docking using conformational space annealing [J Comput Chem 26 78-87 (2005)] 
• Ground-state energy and energy landscape of the Sherrington-Kirkpatrick spin glass [PRB 76, 184412 

(2007)] 
• Successful High-Accuracy Template-Based Modeling in the CASP7 experiments [Proteins, 69, 

83-89 Suppl. 8 (2007)] 
• Multiple sequence alignment by conformational space annealing [Biophysical J. 95 4813-4819 (2008)] 
• All-atom chain-building by optimizing MODELLER energy function using conformational space 

annealing [Proteins, 75,  1010-1023 (2009)] 
• LigDockCSA: Protein-Ligand Docking Using Conformational Space Annealing [J Comput Chem , 32, 

3226-3232 (2011)] 
• Modularity optimization by conformational space annealing, [PRE, 85, 056702 (2012)] 
• Hidden information revealed by optimal community structure from a protein-complex network 

improves protein function prediction [PLOS One (2013)] 
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What is CASP? 

• Critical Assessment of Techniques for Protein 
Structure Prediction 
(http://predictioncenter.gc.ucdavis.edu/). 

• Goal is to help advance the methods of identifying 
protein structure from sequence. 

• Community-wide experiments are held every two 
years starting 1994 (most recent one CASP10 in 2012) 

• Blind prediction and blind assessment 
• Since CASP1 (1994), there are a total of 758 protein 

sequences predicted. 
• Since CASP5 (2002), ~200 methods have been 

tested for each CASP. 



We formulate protein 3D modeling as a series 
of combinatorial optimization problems: 

• Multiple Sequence Alignment (MSA)  optimization of 
a frustrate system [Biophysical J. 95 4813-4819 (2008)]: 
– generate pair-wise alignments between all pairs 
– from each pair-wise alignment, generate residue-to-residue 

restraints  a library of restraints  a frustrated system 
• All-atom chain building from MSA  another 

combinatorial problem of the modeller energy function 
[Proteins 75 1010-1023 (2009)]: 
– modeller energy is a collection of competing terms including 

distance restraints from MSA and stereo-chemistry terms  
inherent frustration when dealing with more than one template 

– modeller energy is treated as a black box for optimization 
• Side-chain modeling is a combinatorial optimization of 

rotamers for a given backbone structure  



CASP7 Experiment 
• 2006, May -- August 
• About 200 prediction methods are tested 
• Total of 104 targets (9 cancelled) 
• Three major categories: 

– High Accuracy Template Based Modeling (28 domains) 
• Use fine resolution measures for backbone assessment 
• Side-chains are also assessed 
• Only model 1s are considered 

– Template Based Modeling (108  domains) 
– Free Modeling (16 domains) 

• Physics-based methods have chances for providing 
competitive protein models 

• Official results are available from CASP7 conference 
homepage (11/26-11/30/2006) and Proteins CASP7 issue 



CASP7 High Accuracy  
Template Based Modeling 

Proteins 69, Issue S8, 27 – 37 (2007) 

0.995 



CASP7 High Accuracy  
Template Based Modeling 

Proteins 69, Issue S8, 27 – 37 (2007) 

Group nHA  GDT-HA   AL0  1  1/2  nMR  LLG  Sum 
  

TS556 (LEE) 26 0.995 0.727 1.427 1.290 12 0.842 3.127 
TS020 (Baker) 26 0.746 0.684 1.242 1.307 12 0.738 2.792 
TS249 (taylor) 6 0.590 0.351 0.348 0.349 4 1.731 2.670 
TS186 (CaspIta-FOX) 27 0.349 0.289 1.280 1.311 12 0.874 2.534 
TS004 (ROBETTA) 28 0.432 0.382 1.405 1.290 12 0.792 2.515 
TS671 (fams-multi) 28 0.654 0.657 0.876 0.933 12 0.616 2.203 
TS010 (SAM-T06) 28 0.464 0.562 1.187 1.185 12 0.487 2.136 
TS234 (McCormack-
Okazaki) 

2 0.414 0.338 0.865 0.672 2 1.028 2.115 

TS664 (CIRCLE-FAMS) 28 0.588 0.630 0.907 0.924 12 0.510 2.022 
TS209 (NanoDesign) 26 0.447 0.353 0.997 0.687 12 0.883 2.016 
TS568 (CHIMERA) 28 0.574 0.636 0.768 0.752 12 0.688 2.015 
TS559 (GSK-CCMM) 4 0.448 0.484 0.396 0.449 2 1.105 2.001 
TS338 (UCB-SHI) 28 0.604 0.522 0.271 0.333 12 1.016 1.954 
TS024 (Zhang) 28 0.838 0.795 0.561 0.679 12 0.411 1.928 
 
 
 

  • 
  • 
  • 

A total of 174 groups 



Conclusion of the official CASP7 assessment for HA/TBM 
targets [Proteins 69, Issue S8, 38 – 56 (2007)] reads: 
 
 “A number of groups did well in the HA/TBM 
category. Group 556 (LEE) stood out as the only 
group that performed near the top according to 
all criteria investigated: fold quality (particularly 
GDT-HA), side-chain rotamer quality, and molecular 
replacement model quality”. 



Accurate protein models 
 
 
 

Better understanding of 
biological mechanisms? 



1. Determined a protein complex structure of condensin, MukBEF by 
combining X-ray data and protein modeling (with Prof BH Oh): “Structural 
Studies of a Bacterial Condensin Complex Reveal ATP-Dependent Disruption 
of Intersubunit Interactions” Cell 136 85-96 (2009) 



2. Screened natural proteins to find more efficient w-aminotransferase for 
asymmetric synthesis of chiral amine by protein modeling and docking 
simulation. The results are verified by wet experiments where 30-60 folds 
increased in the reaction rate is validated. 
Biotechnology and Bioengineering 108 (2010) (with Prof BG. Kim)  
 

Sequence name 
Lowest distance 

among 100 docking 
poses (Å) 

Initial rate for 
forward reaction 

(Uf, μmol/mg∙min) 

Initial rate for 
reverse reaction 

(Ur, μmol/mg∙min) 
Ur / Uf 

Produced (S)-α-
MBA (mM) 

Atu4761 2.87 0.38 0.24 0.63 14.5 

SAV2612 3.00 0.32 0.35 1.1 15.5 

Atu3407 3.09 0.088 0.058 0.66 6.15 

ω-ATVf 3.21 3.4 0.062 0.018 9.13 

1. Caulobacter w-TA were selected and PSI-BLAST was run: 250 sequences were selected. 
2. 250 sequences were multiply-aligned and 4 subgroups were identified. 
3. 51 sequences belong to w-TA  and all the sequences were used for model building. 
4. The models were docked with aminodiphenylmethane(ADPM), and the distance between 

PLP and the N atom of ADPM was measured.     



“Community/Module Detection”  
by Modularity Optimization 

• Divide a network into sub-graphs/mod
ules 

– nodes are more densely connected int
ernally 

• The most commonly used objective fu
nction to evaluate the quality of partitio
n is Q proposed by Girvan and Newma
n 
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Benchmark Test #2: real-world networks 
PRE 85, 056702 (2012) 



Conclusions 

• We have successfully mapped the template-based protein 
modeling into three layers of combinatorial optimization 
problems: MSACSA, ModellerCSA and ROTCSA. 

• We have demonstrated that high accuracy protein 3D 
modeling can be achieved simply by rigorous and 
straightforward optimization of score functions. 

• The proposed method requires a large amount of 
computational resources (100 CPU days per 300aa protein), 
but produces significantly better results. 

• There are rooms for improvement by better template 
detection and loop modeling 

• Application to real/experimental systems is in its preliminary 
stage but quite promising. 
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