Global Optimization by Conformational Space Annealing and its Applications to Biological Systems

Jooyoung Lee http://lee.kias.re.kr

Center for *in-silico* Protein Science Korea Institute for Advanced Study

MINI-WORKSHOP at JAPAN-KOREA HPC WINTER SCHOOL Center for Computational Sciences, University of Tsukuba Feb 26, 2014

Protein Folding Problem: Why is it so difficult to solve it by computation?
Protein Structure 3D Modeling: Physics-Based vs. Informatics-Based
High-Accuracy Protein Modeling by Global Optimization:

-- CASP 7/8/9/10

•Accurate Protein 3D Modeling \rightarrow Better Understanding of Biology?

Global Optimization

- Many problems in science and engineering are optimization problems.
- Efficient acquisition of the ground state and low-lying excitations is often sufficient to understand the essence of the problem.
- "Prediction" followed by "experimental validation" is one area where collaboration between theory and experiments can be most successful.
- Generation of more consistent models with experiments by directly optimizing a restraint function is another area where computation can contribute in many fields → X-ray and NMR protein structure "determination".

Protein Structure Prediction

- 1. Physics-based approaches: Principle-based modeling
 - **1** Accurate potential energy function
 - ② <u>Powerful global optimization method → what we can</u> <u>do better than others</u>
 - **③** Ab initio, de novo, new fold targets (10-20%)
- 2. Informatics-based approaches: Template-based modeling
 - ① Map the original problem to a problem with solution
 → mapping problem (alignment problem)
 - ② Use templates (problems with solutions) to obtain the solution of the original problem (multiple alignment)
 - **③** Comparative modeling, fold recognition (80-90%)

Flow chart of CSA

Schematic diagram to illustrate the procedure to update the bank conformations with a trial conformation α . The bank conformations (of size 5 in this example) are labeled with capital letters. First, by measuring all the distances between the trial conformation α and the bank conformations *A*, *B*, *C*, *D*, and *E*, find the closest conformation *A* (to α) at a distance $D_{\alpha A}$. The procedure to update the bank depends on the relative size of $D_{\alpha A}$ and D_{cut} . If $D_{\alpha A} < D_{cut}$ (with the larger size of D_{cut} shown in the figure) α replaces *A* if, in addition, α is lower in energy than *A*. However, if $D_{\alpha A} > D_{cut}$ (with the smaller size of D_{cut} shown in the figure) α replaces *B*, the highest energy (most unfit) conformation in the bank, if α , in addition, is lower in energy than *B*. If α does not satisfy the "lower in energy" condition in either of the two cases, α is discarded.

 (ϕ, ψ) map of the Leu-13 residue of the 20-residue membrane-bound portion of melittin. In this peptide Leu-13 residue the precedes Pro-14. (113)variable angles)

First Bank

Λ

Selected examples of successful optimization

- Optimization of ECEPP/3 for a 20-residue membrane-bound portion of melittin [Biopolymers **46**, 103-115 (1998)]
- Unbiased global optimization of Lennard Jones clusters up to N = 201 [Phys Rev Lett **91**, 080201 (2003)]
- Ground state in the frustrated XY model and lattice coulomb gas with f = 1/6 [Physica A **31**5 314-320 (2002)]
- Conformational space annealing and an off-lattice frustrated model protein [J Chem Phys **119** 10274-10279 (2003)]
- Structure optimization of an off-lattice AB protein model [Phys Rev E 72 011916 (2005), Submitted]
- Efficient molecular docking using conformational space annealing [J Comput Chem 26 78-87 (2005)]
- Ground-state energy and energy landscape of the Sherrington-Kirkpatrick spin glass [PRB **76**, 184412 (2007)]
- Successful High-Accuracy Template-Based Modeling in the CASP7 experiments [Proteins, 69, 83-89 Suppl. 8 (2007)]
- Multiple sequence alignment by conformational space annealing [Biophysical J. 95 4813-4819 (2008)]
- All-atom chain-building by optimizing MODELLER energy function using conformational space annealing [Proteins, **75**, 1010-1023 (2009)]
- LigDockCSA: Protein-Ligand Docking Using Conformational Space Annealing [J Comput Chem, **32**, 3226-3232 (2011)]
- Modularity optimization by conformational space annealing, [PRE, 85, 056702 (2012)]
- Hidden information revealed by optimal community structure from a protein-complex network improves protein function prediction [PLOS One (2013)]

KIAS

Center for In Silico Protein Science

http://lee.kias.re.kr

What is CASP?

- Critical Assessment of Techniques for Protein Structure Prediction (http://predictioncenter.gc.ucdavis.edu/).
- Goal is to help advance the methods of identifying protein structure from sequence.
- Community-wide experiments are held every two years starting 1994 (most recent one CASP10 in 2012)
- Blind prediction and blind assessment
- Since CASP1 (1994), there are a total of 758 protein sequences predicted.
- Since CASP5 (2002), ~200 methods have been tested for each CASP.

We formulate protein 3D modeling as a series of combinatorial optimization problems:

- Multiple Sequence Alignment (MSA) → optimization of a frustrate system [Biophysical J. 95 4813-4819 (2008)]:
 - generate pair-wise alignments between all pairs
 - from each pair-wise alignment, generate residue-to-residue restraints → a library of restraints → a frustrated system
- All-atom chain building from MSA → another combinatorial problem of the modeller energy function [Proteins 75 1010-1023 (2009)]:
 - modeller energy is a collection of competing terms including distance restraints from MSA and stereo-chemistry terms → inherent frustration when dealing with more than one template
 - modeller energy is treated as a black box for optimization
- Side-chain modeling is a combinatorial optimization of rotamers for a given backbone structure

CASP7 Experiment

- 2006, May -- August
- About 200 prediction methods are tested
- Total of 104 targets (9 cancelled)
- Three major categories:
 - High Accuracy Template Based Modeling (28 domains)
 - Use fine resolution measures for backbone assessment
 - Side-chains are also assessed
 - Only model 1s are considered
 - Template Based Modeling (108 domains)
 - Free Modeling (16 domains)
 - Physics-based methods have chances for providing competitive protein models
- Official results are available from CASP7 conference homepage (11/26-11/30/2006) and Proteins CASP7 issue

CASP7 High Accuracy Template Based Modeling

KIAS

Proteins 69, Issue S8, 27 - 37 (2007)

http://lee.kias.re.kr

CASP7 High Accuracy Template Based Modeling

n _{HA}	GDT-HA	AL0	1	1/2	n _{mr}	LLG	Sum
<u>26</u>	<u>0.995</u>	<u>0.727</u>	<u>1.427</u>	<u>1.290</u>	<u>12</u>	<u>0.842</u>	<u>3.127</u>
26	0.746	0.684	1.242	1.307	12	0.738	2.792
6	0.590	0.351	0.348	0.349	4	1.731	2.670
27	0.349	0.289	1.280	1.311	12	0.874	2.534
28	0.432	0.382	1.405	1.290	12	0.792	2.515
28	0.654	0.657	0.876	0.933	12	0.616	2.203
28	0.464	0.562	1.187	1.185	12	0.487	2.136
2	0.414	0.338	0.865	0.672	2	1.028	2.115
28	0.588	0.630	0.907	0.924	12	0.510	2.022
26	0.447	0.353	0.997	0.687	12	0.883	2.016
28	0.574	0.636	0.768	0.752	12	0.688	2.015
4	0.448	0.484	0.396	0.449	2	1.105	2.001
28	0.604	0.522	0.271	0.333	12	1.016	1.954
28	0.838	0.795	0.561	0.679	12	0.411	1.928
	n _{на} 26 26 6 27 28 28 28 28 2 28 28 28 2 28 2	n_HAGDT-HA260.995260.74660.590270.349280.432280.654280.46420.414280.588260.447280.57440.448280.604280.604	n_{HA}GDT-HAALO260.9950.727260.7460.68460.5900.351270.3490.289280.4320.382280.6540.657280.4640.56220.4140.338280.5780.630260.4470.353280.5740.63640.4480.484280.6040.522280.8380.795	n_{HA}GDT-HAALO1260.9950.7271.427260.7460.6841.24260.5900.3510.348270.3490.2891.280280.4320.3821.405280.6540.6570.876280.4640.5621.18720.4140.3380.907260.4470.3530.997280.5740.6360.76840.4480.4840.396280.6040.5220.271280.8380.7950.561	n_HAGDT-HAALO11/2260.9950.7271.4271.290260.7460.6841.2421.30760.5900.3510.3480.349270.3490.2891.2801.311280.4320.3821.4051.290280.6540.6570.8760.933280.4640.5621.1871.18520.4140.3380.8650.672280.5880.6300.9070.924260.4470.3530.9970.687280.5740.6360.7680.75240.4480.4840.3960.449280.6040.5220.2710.333280.8380.7950.5610.679	n_{HA}GDT-HAALO11/2 n_{MR} 260.9950.7271.4271.29012260.7460.6841.2421.3071260.5900.3510.3480.3494270.3490.2891.2801.31112280.4320.3821.4051.29012280.6540.6570.8760.93312280.4640.5621.1871.1851220.4140.3380.8650.6722280.5780.6300.9070.92412280.5740.6360.7680.7521240.4480.4840.3960.4492280.6040.5220.2710.33312280.6040.5220.2710.33312280.6040.5220.2710.33312280.8380.7950.5610.67912	n_{HA}GDT-HAALO11/2 n_{MR} LLG260.9950.7271.4271.290120.842260.7460.6841.2421.307120.73860.5900.3510.3480.34941.731270.3490.2891.2801.311120.874280.4320.3821.4051.290120.792280.6540.6570.8760.933120.616280.4640.5621.1871.185120.48720.4140.3380.9070.924120.510280.5740.6360.7680.752120.68840.4480.4840.3960.44921.105280.6040.5220.2710.333121.016280.6040.5220.2710.333120.411

A total of 174 groups

Proteins 69, Issue S8, 27 - 37 (2007)

Conclusion of the official CASP7 assessment for HA/TBM targets [Proteins 69, Issue S8, 38 – 56 (2007)] reads:

"A number of groups did well in the HA/TBM category. *Group 556 (LEE) stood out as the only group that performed near the top according to all criteria investigated*: fold quality (particularly GDT-HA), side-chain rotamer quality, and molecular replacement model quality".

Accurate protein models

Better understanding of biological mechanisms?

http://lee.kias.re.kr

1. Determined a protein complex structure of condensin, **MukBEF** by combining X-ray data and protein modeling (with Prof BH Oh): "Structural Studies of a Bacterial Condensin Complex Reveal ATP-Dependent Disruption of Intersubunit Interactions" Cell **136** 85-96 (2009)

2. Screened natural proteins to find more efficient **w-aminotransferase** for asymmetric synthesis of chiral amine by protein modeling and docking simulation. The results are verified by wet experiments where 30-60 folds increased in the reaction rate is validated.

Biotechnology and Bioengineering 108 (2010) (with Prof BG. Kim)

	○	lanine → ∞-TA	- , + py	ruvate	
Sequence name	Lowest distance among 100 docking poses (Å)	Initial rate for forward reaction (U _f , µmol/mg·min)	Initial rate for reverse reaction (U _r , µmol/mg·min)	U _r / U _f	Produced (S)-α- MBA (mM)
Atu4761	2.87	0.38	0.24		14.5
SAV2612	3.00	0.32	0.35		15.5
Atu3407	3.09	0.088	0.058		6.15
ω-ATVf	3.21	3.4	0.062	0.018	9.13

- 1. Caulobacter w-TA were selected and PSI-BLAST was run: 250 sequences were selected.
- 2. 250 sequences were multiply-aligned and 4 subgroups were identified.
- 3. 51 sequences belong to w-TA and all the sequences were used for model building.
- 4. The models were docked with aminodiphenylmethane(ADPM), and the distance between PLP and the N atom of ADPM was measured.

<u>"Community/Module Detection"</u> by Modularity Optimization

- Divide a network into sub-graphs/mod ules
 - nodes are more densely connected int ernally
- The most commonly used objective function to evaluate the quality of partition is Q proposed by Girvan and Newma $Q = \sum_{s=1}^{r} \left[\frac{l_s}{L} \left(\frac{d_s}{2L} \right)^2 \right]$
 - l_s : Number of intra-community edges in s
 - d_s : Sum of degrees of nodes in s
 - L : Total number of edges in a network

Benchmark Test #2: real-world networks PRE 85, 056702 (2012)

				CSA				
Nodes	Edges	Network	N_c	Q_{max}	Q_{pub}	Q_{opt}	$\%^{SA}_{opt}$	Source
62	159	Dolphins	5	0.52852	0.5285	0.5285	16.0	[25-27]
77	254	Les Miserables	6	0.56001	0.5600	0.5600	20.0	[27]
105	441	Political books	5	0.52724	0.5272	0.5272	100.0	[26-28]
115	613	College football	10	0.60457	0.6046	0.6046	100.0	[26, 27, 29]
198	2742	Jazz	4	0.44514	0.4451	-	-	[26, 28, 30, 31]
332	2126	USAir97	6	0.36824	0.3682	0.3682	0.0	[27]
379	914	Netscience_main	19	0.84859	0.8486	0.8486	0.0	[27]
453	2025	C. elegans	9	0.45325	0.452	-	-	[32]
512	819	Electronic Circuit (s838)	16	0.81936	0.8194	0.8194	0.0	[27]
1133	5451	E-mail	10	0.58283	0.582	-	-	[32]
6927	11850	Erdos 02	40	0.71843	0.7162	-	-	[28]
10680	24316	PGP	100	0.88674	0.8841	-	-	[28, 32]
27519	116181	condmat2003	80	0.76745	0.761	-	-	[29]

TABLE III. Comparison between the maximum modularity values obtained by CSA, Q_{max} , with previously published ones, Q_{pub} , and the maximum values obtained by the exact method [27], Q_{opt} , is displayed. N_c denotes the number of communities found by CSA. Source indicates the reference that the modularity value is collected. $\%_{opt}^{SA}$ denotes the percentage of SA runs that reached to the optimal modularity community structure.

Conclusions

- We have successfully mapped the **template-based protein modeling** into **three layers of combinatorial optimization problems**: **MSACSA**, **ModellerCSA** and **ROTCSA**.
- We have demonstrated that high accuracy protein 3D modeling can be achieved **simply by rigorous and straightforward optimization of score functions**.
- The proposed method requires a large amount of computational resources (100 CPU days per 300aa protein), but produces significantly better results.
- There are rooms for improvement by **better template detection** and **loop modeling**
- Application to real/experimental systems is in its preliminary stage but quite promising.

<u>Acknowledgements</u>

3D Modeling:	Keehyoung Joo, <i>KIAS</i> Jinwoo Lee, <i>Kwangwoon U.</i> Sung Jong Lee, <i>Suwon U.</i>	
Protein Function:	Mina Oh, <i>KIAS</i>	
Community Detection:	Juyong Lee (KIAS/NIH) Steven Gross (UC Irvine)	
Experimental Collaboration:	Byung-Gee Kim, <i>Seoul National U.</i> DH Shin, <i>Ewha Womans U.</i> Weontae Lee, <i>Yonsei U</i>	Byung-Ha Oh, <i>KAIST.</i> HC Shin, <i>Soongsil U.</i>
International Collaboration:	Masaki Sasai, <i>Nagoya U.</i> Adam Liwo and Cezary Czaplewski, <i>U c</i> Zengyi Chang, <i>Beijing U</i>	Bernie Brooks, <i>NIH</i> of Gdansk
Cluster Computers:	KIAS/CAC	
Supported by the Korea Scien Korean government (MEST) (ice and Engineering Foundation (KOSEF No. 2009-0063610)) grant funded by the

Postdoc/Researcher Positions Available

Thank Yo

Center for In Silico Protein Science

http://lee.kies.re.kr