Direct calculation of light nucleus from lattice QCD

Takeshi Yamazaki

Center for Computational Sciences

Ken-ichi Ishikawa, Yoshinobu Kuramashi, Akira Ukawa for PACS Collaboration

Refs: PRD81:111504(R)(2010); PRD84:054506(2011); PRD86:074514(2012)

PRD92:014501(2015); PoS(LATTICE 2015)081

First Tsukuba-CCS-RIKEN joint workshop on microscopic theories of nuclear structure and dynamics @ RIEKN, Dec. 12–13, 2016 and CCS, Dec. 14–16, 2016

Outline

- Introduction
- Calculation method of nucleus in lattice QCD
- Simulation parameters
- Results of light nuclei
 - NN channels
 - ⁴He and ³He channels
- Summary and future work

Introduction

Binding force $\begin{cases} \text{protons and neutrons} \rightarrow \text{nuclei} \\ \text{quarks and gluons} \rightarrow \text{protons and neutrons} \end{cases}$

both from fundamental strong interaction of quark and gluon well known, but hard to prove

Spectrum of proton and neutron (nucleons) success of non-perturbative lattice QCD calculation degrees of freedom of quarks and gluons

quark and gluon \rightarrow proton and neutron \rightarrow nucleus

Hadron spectrum in $N_f = 2 + 1$ QCD Lattice 2015, Ukita for PACS Collaboration PoS(LATTICE2015)075

 $m_{\pi} \sim 0.145$ GeV on $L \sim 8$ fm at $a^{-1} = 2.33$ GeV (SPIRE Field 5) using reweighting m_{ud}, m_s + extrapolation \rightarrow physical m_{π} and m_K

Hadron spectrum in $N_f = 2 + 1$ QCD Lattice 2015, Ukita for PACS Collaboration PoS(LATTICE2015)075

 $m_{\pi} \sim 0.145$ GeV on $L \sim 8$ fm at $a^{-1} = 2.33$ GeV (SPIRE Field 5) using reweighting m_{ud}, m_s + extrapolation \rightarrow physical m_{π} and m_K

$$\bar{l}_3 = 2.87(62), \ \bar{l}_4 = 4.38(33)$$

FLAG2013: $\bar{l}_3 = 3.05(99), \ \bar{l}_4 = 4.02(28)$ at $\mu = m_\pi^{\text{phys}}$

$$m_{ud}^{\overline{\text{MS}}} = 3.142(26)(35)(28)\text{MeV}, \ m_s^{\overline{\text{MS}}} = 88.59(61)(98)(79)\text{MeV}$$

FLAG2013: $m_{ud}^{\overline{\text{MS}}} = 3.42(6)(7)\text{MeV}, \ m_s^{\overline{\text{MS}}} = 93.8(1.5)(1.9)\text{MeV}$

 $f_{\pi} = 131.79(80)(90)(1.25) \text{MeV}, f_{K} = 155.55(68)(1.06)(1.48) \text{MeV}$ FLAG2013: $f_{\pi} = 130.2(1.4) \text{MeV}, f_{K} = 156.3(0.9) \text{MeV}$

reasonably consistent

investigation of $a \rightarrow 0$ limit necessary

Introduction

Binding force $\begin{cases} \text{protons and neutrons} \rightarrow \text{nuclei} \\ \text{quarks and gluons} \rightarrow \text{protons and neutrons} \end{cases}$

both from fundamental strong interaction of quark and gluon well known, but hard to prove

Spectrum of proton and neutron (nucleons) success of non-perturbative lattice QCD calculation degrees of freedom of quarks and gluons

quark and gluon \rightarrow proton and neutron \rightarrow nucleus

goal: quantitatively understand property of nucleus from QCD

So far not many studies for multi-baryon bound states \rightarrow Can we reproduce binding energy of light nuclei?

Ultimate goal of lattice QCD

http://www.jicfus.jp/jp/promotion/pr/mj/2014-1/; figure from Irie-san

quantitatively understand property of nuclei from QCD

Exploratory study of three- and four-nucleon systems PACS-CS Collaboration, PRD81:111504(R)(2010)

Several systematic errors included, e.g., $N_f = 0$, $m_{\pi} = 0.8$ GeV

Multi-baryon bound state from lattice QCD

1. 4 He and 3 He

'10 PACS-CS $N_f = 0$ $m_{\pi} = 0.8$ GeV PRD81:111504(R)(2010) '12 HALQCD $N_f = 3$ $m_{\pi} = 0.47$ GeV, $m_{\pi} > 1$ GeV ⁴He '12 NPLQCD $N_f = 3$ $m_{\pi} = 0.81$ GeV '12 TY et al. $N_f = 2 + 1$ $m_{\pi} = 0.51$ GeV PRD86:074514(2012) '15 TY et al. $N_f = 2 + 1$ $m_{\pi} = 0.30$ GeV PRD92:014501(2015)

2. H dibaryon in $\Lambda\Lambda$ channel (S=-2, I=0)

'11, '12 NPLQCD $N_f = 2 + 1$ $m_\pi = 0.39$ GeV, $N_f = 3$ $m_\pi = 0.81$ GeV

'11, '12 HALQCD
$$N_f$$
 = 3 m_{π} = 0.47–1.02 GeV

'11 Luo et al. $N_f = 0 \ m_{\pi} = 0.5 - 1.3 \ \text{GeV}$

'14, '15, '16 Mainz
$$N_f=2~m_{\pi}=0.45, 1.0~{
m GeV}$$

3. NN

'11 PACS-CS $N_f = 0$ $m_{\pi} = 0.8$ GeV PRD84:054506(2011) '12 NPLQCD $N_f = 2 + 1$ $m_{\pi} = 0.39$ GeV (Possibility) '12 NPLQCD, '15 CalLat $N_f = 3$ $m_{\pi} = 0.81$ GeV '12 TY *et al.* $N_f = 2 + 1$ $m_{\pi} = 0.51$ GeV PRD86:074514(2012) '15 TY *et al.* $N_f = 2 + 1$ $m_{\pi} = 0.30$ GeV PRD92:014501(2015) '15 NPLQCD $N_f = 2 + 1$ $m_{\pi} = 0.45$ GeV

Other states: $\Xi\Xi$, '12 NPLQCD; spin-2 $N\Omega$, ¹⁶O and ⁴⁰Ca, '14 HALQCD, ···

Calculation method of multi-nucleon bound state

Traditional method: example ⁴He channel
$$\langle 0|O_{4}_{He}(t)\overline{O}_{4}_{He}(0)|0\rangle = \sum_{n} \langle 0|O_{4}_{He}|n\rangle \langle n|\overline{O}_{4}_{He}|0\rangle e^{-E_{n}t} \xrightarrow[t\gg1]{} A_{0} e^{-E_{0}t}$$

Difficulties for multi-nucleon calculation

1. Statistical error Statistical error $\propto \exp\left(N_N\left[m_N - \frac{3}{2}m_\pi\right]t\right)$

→ heavy quark $m_{\pi} = 0.8-0.3$ GeV + large # of measurements 2. Calculation cost PACS-CS PRD81:111504(R)(2010) Wick contraction for ⁴He = $p^2n^2 = (udu)^2(dud)^2$: 518400 → 1107 → reduction using $p(n) \leftrightarrow p(n) \ p \leftrightarrow n$, $u(d) \leftrightarrow u(d)$ in p(n)

+ block of 3 quark props(parallel) and contraction(workstation)

'12 Doi and Endres; Detmold and Orginos; '13 Günther et al.; '15 Nemura 3. Identification of bound state on finite volume

attractive scattering state $\Delta E_L = E_0 - N_N m_N = O(L^{-3}) < 0$

'86,'91 Lüscher, '07 Beane et al.

 \rightarrow Volume dependence of $\Delta E_L \rightarrow \Delta E_\infty \neq 0 \rightarrow$ bound state

Spectral weight: '04 Mathur et al., Anti-PBC '05 Ishii et al.

Calculation method of multi-nucleon bound state Traditional method in lattice QCD (*NN* channel) nucleon correlation function

$$C_N(t) = \langle 0|N(t)\overline{N}(0)|0\rangle = \sum_n \langle 0|N|n\rangle \langle n|\overline{N}|0\rangle e^{-E_n^N t} \xrightarrow[t \ge t_N \gg 1]{} A_0^N e^{-m_N t}$$

NN correlation function

$$C_{NN}(t) = \langle 0|O_{NN}(t)\overline{O}_{NN}(0)|0\rangle = \sum_{n} \langle 0|O_{NN}|n\rangle \langle n|\overline{O}_{NN}|0\rangle e^{-E_{n}t}$$
$$\xrightarrow{t \ge t_{NN} \gg 1} A_{0} e^{-E_{NN}t}$$

Ratio of correlation functions

$$R(t) = \frac{C_{NN}(t)}{\left(C_N(t)\right)^2} \xrightarrow[t \ge t_R \gg 1]{} A'_0 e^{-\Delta Et}, \quad \Delta E = E_{NN} - 2m_N$$

Important condition: $t_R \ge t_N, t_{NN}$

 $C_N(t)$ and $C_{NN}(t)$ are written by each ground state in $t \ge t_R$

$R(t) = C_{NN}(t)/(C_N(t))^2$ in $N_f = 0$

Preliminary result: $L^3 \times T = 20^3 \times 64 N_f = 0 m_{\pi} = 0.8$ GeV, $N_{\text{meas}} \sim 1.1 \times 10^7$

Effective mass : $m^{\text{eff}} = \log(C(t)/C(t+1)) \xrightarrow[t \gg 1]{} m$

Effective mass in ${}^{3}S_{1}$ channel

vertical dashed line : plateau starts t_N or t_{NN}

 $R(t) = C_{NN}(t)/(C_N(t))^2$ in $N_f = 0$

Preliminary result: $L^3 \times T = 20^3 \times 64 N_f = 0 m_{\pi} = 0.8$ GeV, $N_{\text{meas}} \sim 1.1 \times 10^7$

Effective mass : $m^{\text{eff}} = \log(C(t)/C(t+1)) \xrightarrow[t\gg1]{} m$

Effective mass in ${}^{3}S_{1}$ channel

vertical dashed line : plateau starts t_N or t_{NN} or t_R

$R(t) = C_{NN}(t)/(C_N(t))^2$ in $N_f = 0$

Preliminary result: $L^3 \times T = 20^3 \times 64 N_f = 0 m_{\pi} = 0.8$ GeV, $N_{\text{meas}} \sim 1.1 \times 10^7$

Effective mass : $m^{\text{eff}} = \log(C(t)/C(t+1)) \xrightarrow[t\gg1]{} m$

Effective mass in ${}^{3}S_{1}$ channel

claim: different results from exp source and wall source '16 HALQCD

$$R(t) = C_{NN}(t)/(C_N(t))^2$$
 in $N_f = 0$

Preliminary result: $L^3 \times T = 20^3 \times 64 N_f = 0 m_{\pi} = 0.8$ GeV, $N_{\text{meas}} \gtrsim 1.1 \times 10^7$

Effective mass in ${}^{3}S_{1}$ channel

wall source needs longer t for plateau \leftarrow harder to calculate due to noise

consistent results in plateau region

$$R(t) = C_{NN}(t)/(C_N(t))^2$$
 in $N_f = 0$

Preliminary result: $L^3 \times T = 20^3 \times 64 N_f = 0 m_{\pi} = 0.8 \text{ GeV}, N_{\text{meas}} \gtrsim 1.1 \times 10^7$

Effective mass in ${}^{3}S_{1}$ channel

 $\Delta E_{NN}^{\text{eff}}$ of wall source : nontrivial structure (also observed in other volumes) consistent result with exp source in $t \ge t_R$ exp source : easier to calculate $\Delta E_{NN} \rightarrow$ used in our calculation

Simulation parameters

 N_f = 2+1 QCD β = 1.90, a^{-1} = 2.194 GeV with m_Ω = 1.6725 GeV, '10 PACS-CS

Iwasaki gauge + non-perturbative O(a)-improved Wilson fermion actions

 $m_{\pi} = 0.51 \text{ GeV}$ and $m_N = 1.32 \text{ GeV}$ PRD86:074514(2012)

$$m_{\pi} = 0.30 \text{ GeV}$$
 and $m_N = 1.05 \text{ GeV}$ PRD92:014501(2015)

 $m_s \sim$ physical strange quark mass

⁴He, ³He, NN($^{3}S_{1}$ and $^{1}S_{0}$)

		$m_{\pi} = 0.5$ GeV		$\mid m_{\pi} = 0.3 \text{ GeV} \mid$		$\mid R \mid$
\Box	L [fm]	$N_{\rm conf}$	Nmeas	N _{conf}	N _{meas}	
32	2.9	200	192			
40	3.6	200	192			
48	4.3	200	192	400	1152	12
64	5.8	190	256	160	1536	5

 $R = (N_{\text{conf}} \cdot N_{\text{meas}})_{0.3 \text{GeV}} / (N_{\text{conf}} \cdot N_{\text{meas}})_{0.5 \text{GeV}}$

Exponential smeared source and point sink (N with p = 0) operators

Computational resources

PACS-CS, T2K-Tsukuba, HA-PACS, COMA at Univ. of Tsukuba

T2K-Tokyo and FX10 at Univ. of Tokyo, and K at AICS

Result: *NN* channels $\Delta E_{NN} = E_{NN} - 2m_N$

Effective energy shift $\Delta E_{NN}^{\text{eff}}$ in $m_{\pi} = 0.5 \text{ GeV}$

 $L^3 \to \infty$ extrapolation based on Lüscher's finite volume formula $\Delta E_L = -\frac{\gamma^2}{m_N} \left\{ 1 + \frac{C_{\gamma}}{\gamma L} \sum_{\vec{n}}' \frac{\exp(-\gamma L \sqrt{\vec{n}^2})}{\sqrt{\vec{n}^2}} \right\}, \ \Delta E_{NN} = \frac{\gamma^2}{m_N}$

'04 Beane et al., '06 Sasaki & TY

gray data: single volume calculation

 $L^3 \rightarrow \infty$ extrapolation based on Lüscher's finite volume formula

$$\Delta E_L = -\frac{\gamma^2}{m_N} \left\{ 1 + \frac{C_{\gamma}}{\gamma L} \sum_{\vec{n}}' \frac{\exp(-\gamma L \sqrt{\vec{n}^2})}{\sqrt{\vec{n}^2}} \right\}, \ \Delta E_{NN} = \frac{\gamma^2}{m_N}$$
'04 Beane *et al.*, '06 Sasaki & TY

existence of bound states in ${}^{3}S_{1}$ and ${}^{1}S_{0}$ inconsistent with experiment due to larger $m_{\pi}(?)$ Investigation of m_{π} dependence $\rightarrow m_{\pi} \sim 0.145$ GeV on $L \sim 8$ fm

Investigations of m_π dependence $\rightarrow m_\pi \sim 0.145$ GeV on $L \sim 8$ fm

Large finite volume effect expected even on $L \sim 8$ fm

³S₁:
$$\Delta E_{exp} = 2.2 \text{ MeV}$$

 $\Delta E_L = -(\Delta E_{exp} + \mathcal{O}(exp(-L\sqrt{m_N\Delta E_{exp}}))) \lesssim -4 \text{ MeV}$
¹S₀: $a_0^{exp} = 23.7 \text{ fm}$
 $\Delta E_L = -\frac{4\pi a_0^{exp}}{m_N L^3} + \mathcal{O}(1/L^4) \lesssim -2 \text{ MeV}$

Light nuclei likely formed in 0.3 GeV $\leq m_{\pi} \leq$ 0.8 GeV Same order of ΔE to experiments \rightarrow relatively easier than NNlarge $|\Delta E|$ makes less V dependence at physical m_{π}

touchstone of quantitative understanding of nuclei from lattice QCD Investigations of m_{π} dependence $\rightarrow m_{\pi} \sim 0.145$ GeV on $L \sim 8$ fm

Preliminary results of effective ΔE at $m_{\pi} \sim 0.145$ GeV on $L \sim 8$ fm

Computational resources (HPCI System Research Project: hp160124) HA-PACS, COMA @Univ. of Tsukuba, K @AICS, FX100 @RIKEN

Summary

Direct calculation of light nucleus $NN({}^{3}S_{1}, {}^{1}S_{0}), {}^{3}He, {}^{4}He$

 $N_f = 0 \text{ QCD } m_\pi = 0.8 \text{ GeV}$

Wall source gives consistent result with exp source, but not suitable for direct calculation

- hard to obtain clear signal in plateau region
- $\Delta E_{NN}^{\text{eff}}$: non monotonic structure in small t region more sophisticated method (GEVP) necessary for more reliable result

$N_f = 2 + 1 \text{ QCD } m_{\pi} = 0.5, 0.3 \text{ GeV}$

bound state in $^{4}\text{He},~^{3}\text{He},~^{3}\text{S}_{1}$ and $^{1}\text{S}_{0}$

- ΔE larger than experiment and small m_{π} dependence
- Bound state in ${}^{1}S_{0}$ not observed in experiment, but similar to

 $N_f = 3 m_{\pi} = 0.8$ GeV by NPLQCD and CalLat; $N_f = 2 + 1 m_{\pi} = 0.45$ GeV by NPLQCD

Need further investigations of systematic errors

e.g. large m_{π} , finite lattice spacing, excited state

 N_f = 2 + 1 $m_\pi \sim$ 0.145 GeV on $L \sim$ 8 fm