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Energy Density Functionals

✔ the nuclear many-body problem is effectively mapped onto a one-body 
problem without explicitly involving inter-particle interactions!

✔ the exact density functional is approximated with powers and gradients of 
ground-state densities and currents.

✔  universal density functionals can be applied to all nuclei throughout the 
chart of nuclides.
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in an effective way the overall exchange and correlation
contribution.

The application of the KS-DFT scheme to self-bound sys-
tems like atomic nuclei is not straightforward, because of the
absence of an external confining potential. The usual procedure
used with Skyrme functionals has been justified recently
[10–12] by reformulating the problem in the “intrinsic”
system.

In nuclear physics to build up the exchange and correlation
contribution amounts to a detailed determination of the ground
state of symmetric nuclear matter and of neutron matter to be
used as a guide for finite nuclei energy density functionals.
Accurate nuclear matter calculations are very complicated and
not as much advanced as for electron systems of condensed
matter. Nonetheless, in recent years, quite some progress has
been achieved and we build our KS-DFT approach on the
equation of state (EOS) of Baldo et al., developed in Refs. [13–
19], which is based on the well-known hole line expansion.
This EOS is calculated from realistic two-body and three-body
interactions treated at the Brueckner Hartree-Fock level. It is
compatible with phenomenological constraints coming from
data of heavy-ion reactions [19], as well as from the analysis of
astrophysical observations [20,21]. It is worth mentioning that
only two works exist which tried to follow the same strategy
as here, one by Fayans [22] and the other by Steiner et al. [23].
However, they are based on a somewhat older EOS [24].

The functional obtained will be used to describe finite nuclei
at the mean-field level, concentrating on the binding energy
systematic. Therefore, it is important to include beyond-mean-
field effects having a strong impact on binding energies and
not present in nuclear matter. The most obvious one is the
correlation energy associated with symmetry restoration that
will be accounted for in the case of translational and rotational
invariance.

A different approach to nuclear energy density functional
(EDF) was developed on the basis of the chiral two- and
three-body forces [25–29]. The final form of the EDF contains
a set of contact interactions, similar to the Skyrme functionals,
with a corresponding set of about a dozen of parameters.
This part is supplemented by a contribution coming from pion
exchanges, which is nonlocal and treated through the density
matrix expansion procedure. Preliminary calculations [29] on
a selected set of nuclei show a slight improvement with respect
to the standard Skyrme functionals and open a promising
prospect for large-scale fitting procedures.

The reason for such an intense focus on an accurate
theoretical description of bulk properties of nuclei all over
the nuclide chart is discussed, for instance, in Ref. [30]:
Many physical scenarios involve neutron-rich nuclei which
are far from reach from an experimental point of view and
therefore reliable theoretical predictions are the only possible
option at present. The present status is that good agreement
between different theoretical models is to be expected as long
as we do not move towards the neutron drip line, a region
of relevance in stellar nucleosynthesis processes. Therefore,
a new model based on somewhat different ideas closer to the
KS-DFT approach than the more traditional Skyrme-like EDF
(inspired by contact central potentials) can help to clarify the
uncertainties associated with present-day models.

In the present work, a KS approach based on the same
microscopic bulk input as in Ref. [1] is used for the particle-
hole channel. However, we are able to reduce the number of
parameters by two without losing accuracy. As before, we
consider an additional bulk parameter for a precise adjustment
of the numerically obtained E/A value. However, for the
surface, we reduce the number of parameters from three to
one by the condition that, in infinite symmetric and infinite
pure neutron matter, the strength parameters of the finite range
term reproduce the coefficients of the quadratic terms of the
bulk energy density obtained from the microscopic calculation.
Therefore, no subtraction term in the finite range part as in
Ref. [1] is necessary. The range r0 of the surface term remains
the only adjustable parameter; see the more detailed discussion
below. Although there are, together with the strength of the
spin-orbit term, three parameters in the particle-hole channel,
we want to emphasize that the most relevant are the ones from
bulk and surface. We stress this point, because it seems to us a
reduction to two basic physical inputs to the binding energy of
nuclei: energy per particle of infinite matter and surface energy.
That this is possible is as much surprising as it is gratifying.
It also should be mentioned that the adjustment of those two
parameters is extremely sensitive: Both have to be fine tuned
to the order of 10−3. This sensitivity points to a well-defined
physical content of the parameters.

It should be pointed out, however, that KS-DFT addresses
only the ground state and is, in principle, not tailored to
describe excited states of the system. Nevertheless, we also
use it for the description of the giant monopole resonances
(GMRs).

The paper is organized as follows. The following section is
devoted to briefly recalling our previous Barcelona-Catania-
Paris (BCP) functional. In the third section, the new EDF
built up in this paper is discussed. The results obtained with
this improved functional, which we call BCPM (Barcelona-
Catania-Paris-Madrid), are also presented in the same section.
The predictive power of the BCPM functional regarding other
observable such as charge radii, quadrupole, and octupole
deformations and fission barriers are discussed in the fourth
section. The ability of the BCPM functional for describing the
isoscalar GMR is the subject of the fifth section. Finally, the
summary and conclusions are given in the last section.

II. FORMER BCP FUNCTIONAL

The former BCP functional was proposed in Ref. [1]. This
and subsequent refinements [31] are based on the Kohn-Sham
density functional theory (KS-DFT), where the one body
density ρ(r) plays a central role. In the KS-DFT theory an
auxiliary set of A orthonormal wave functions ϕi(r), where
A is the mass number, is introduced to express formally the
density as if it were obtained from a Slater determinant as a
sum of the product of single-particle wave functions,

ρ(r) =
∑

i

|ϕi(r)|2,

with the ϕ’s determined from the minimization of the ground-
state energy. In condensed matter and atomic physics the EDF
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A orthonormal single particle wave functions ψi(r), where A is the
number of particles, and the density is assumed to be given by

ρ(r) =
∑

i,s,t

∣∣ψi(r, s, t)
∣∣2

(1)

where s and t stand for spin and iso-spin indices. The variational
procedure to minimise the functional is performed in terms of the
orbitals instead of the density. Usually in condensed matter and
atomic physics the HK functional E[ρ(r)] is split into two parts:
E = T0[ρ]+ W [ρ] [8]. The first piece T0 corresponds to the uncor-
related part of the kinetic energy and within the KS method it is
written as

T0 = h̄2

2m

∑

i,s,t

∫
d3r

∣∣∇ψi(r, s, t)
∣∣2

. (2)

The other piece W [ρ] contains the potential energy as well as the
correlated part of the kinetic energy.

Then, upon variation, one gets a closed set of A Hartree-like
equations with an effective potential, the functional derivative of
W [ρ] with respect to the local density ρ(r). Since the latter de-
pends on the density, and therefore on the ψi ’s, a self-consistent
procedure is necessary. Still the equations are exact but they only
can be of some use, if a reliable approximation is found for
the otherwise unknown density functional W [ρ]. In the KS-DFT
formalism the exact ground state wave function is actually not
known, the density being the basic quantity.

In nuclear physics, contrary to the situation in condensed mat-
ter and atomic physics, the contribution of the spin–orbit interac-
tion to the energy functional is very important. Non-local contri-
butions have been included in DFT in several ways already long
ago (see [27] for a recent review of this topic). Consequently, the
spin–orbit part also can be split in an uncorrelated part Es.o. plus
a remainder. The form of the uncorrelated spin–orbit part is taken
exactly as in the Skyrme [1] or Gogny forces [2].

We thus write for the functional in the nuclear case E =
T0 + Es.o. + E int + EC , where we explicitly split off the Coulomb
energy EC because it is a quite distinct part in the Hamilto-
nian. It shall be treated, as usual, at lowest order, i.e. the di-
rect term plus the exchange contribution in the Slater approx-
imation, that is E H

C = (1/2)
∫∫

d3r d3r′ ρp(r)|r − r′|−1ρp(r′), and
Eex

C = −(3/4)(3/π)1/3 ∫
d3r ρp(r)4/3 with EC = E H

C + Eex
C and ρp/n

the proton/neutron density.
Let us now discuss the nuclear energy functional contribution

E int[ρn,ρp] which contains the nuclear potential energy as well
as additional correlations. We shall split it in a finite range term
EFR

int[ρn,ρp] to account for correct surface properties and a bulk
correlation part E∞

int[ρn,ρp] that we take from a microscopic infi-
nite nuclear matter calculation [28] as we will discuss below. Thus
our final KS-DFT-like functional reads:

E = T0 + Es.o. + E∞
int + EFR

int + EC . (3)

For the finite range term we make the simplest phenomenolog-
ical ansatz possible

EFR
int[ρn,ρp] = 1

2

∑

t,t′

∫ ∫
d3r d3r′ ρt(r)vt,t′ (r − r′)ρt′ (r′)

− 1
2

∑

t,t′
γt,t′

∫
d3r ρt(r)ρt′ (r) (4)

with t = proton/neutron and γt,t′ the volume integral of vt,t′ (r).
The substraction in (4) is made in order not to contaminate the
bulk part, determined from the microscopic infinite matter calcu-
lation. Finite range terms have already been used earlier, general-
izing usual Skyrme functionals (see e.g. [23,29,30]). In this study,

Table 1
Coefficients of the polynomial fits Ps , Eq. (6), and Pn , Eq. (7), to the EOS of sym-
metric and neutron matters

k b(s)
k (MeV) b(n)

k (MeV) ak (MeV)

1 −105.640069 −43.985736 −15.3563461
2 167.700968 49.784439 16.4197441
3 −181.762432 −42.400650 0.0
4 103.166047 21.894382 0.0
5 −22.4990207 −4.3071179 0.0

for the finite range form factor vt,t′ (r) we make a simple Gaus-
sian ansatz: vt,t′ (r) = Vt,t′ e−r2/r0

2
. We choose a minimum of three

open parameters: V p,p = Vn,n = V L , Vn,p = V p,n = V U , and r0.
The only undetermined and most important piece in (3) is

then the bulk contribution E∞
int. In condensed matter, chemistry

and atomic physics, this quantity implies the EOS of interacting
electrons and for the KS-DFT scheme, most of the time, it is ob-
tained from Quantum Monte Carlo (QMC) calculations, the results
of which are then accurately represented by a fit function (not nec-
essarily a polynomial, as we use later). As already mentioned, we
obtain E∞

int from microscopic infinite matter calculations, using a
realistic bare force, together with a converged hole-line expansion
[28]. We first reproduce by interpolating functions the correlation
part of the ground state energy per particle of symmetric and
pure neutron matters, and then make a quadratic interpolation for
asymmetric matter. Finally the total correlation contribution to the
energy functional in local density approximation reads:

E∞
int[ρp,ρn] =

∫
d3r

[
P s(ρ)

(
1 − β2) + Pn(ρ)β2]ρ (5)

where P s and Pn are two interpolating polynomials for symmetric
and pure neutron matter, respectively, at the density ρ = ρp + ρn ,
and β = (ρn − ρp)/ρ is the asymmetry parameter. For P s we took
(x = ρ/ρ0, with ρ0 = 0.17 fm−3, see below)

P s(ρ) =
{∑5

k=1 b(s)
k xk, x < 1,

P s(ρ0) + a1 · (x − 1) + a2 · (x − 1)2, x > 1,
(6)

where the coefficients (energy/particle in MeV) are given in Ta-
ble 1. The two forms match at x = 1 (ρ = ρ0) up to the second
derivative. This functional form can be used up to ρ = 0.24 fm−3,
which is the interval where the independent fit of the microscopic
calculation has been performed.

A similar expression holds for Pn ,

Pn(ρ) =
5∑

k=1

b(n)
k xk (7)

where again the coefficients are displayed in Table 1, which is
valid in the same density interval. The interpolating polynomial
for symmetric matter has been constrained to allow a minimum
exactly at the energy E/A = −16.00 MeV and Fermi momentum
kF = 1.36 fm−1, i.e. ρ0 = 0.17 fm−3. This is within the uncer-
tainty of the numerical microscopic calculations of the EOS.1 The
constrained fit was performed by keeping the EOS as smooth as
possible, thus allowing for some very small deviations from the
microscopic calculations below saturation density. An interpolat-
ing fit which goes exactly through the calculated EOS, as per-
formed in [28], gives a not good enough saturation point (typically
E/A = −15.6 MeV, kF = 1.38 fm−1). As discussed in [31], the low

1 The value E/A = −16.00 MeV has nothing special and we did vary this pa-
rameter in slight proportions. Decreasing this value up to E/A = −16.15 MeV still
moderately improves the rms values for energies and radii (see Table 3) but at the
expense of an unacceptable high value of the incompressibility (K∞ = 279 MeV).
We therefore took the above cited value as our optimal choice.
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obtained with successful mean-field models such as the Gogny
D1S force [36], the Skyrme SLy4 interaction [33], and the
relativistic mean-field parametrization NL3 [39].

In subsequent publications we explored the properties
of BCP1 and BCP2 in describing quadrupole and octupole
deformation ground-state properties, fission, excited octupole
states, etc. [40–42]. In dealing with deformed nuclei the
most relevant beyond-mean-field effect, namely the rotational
energy correction has been considered in an approximate way
[43]. Also some other parametrizations of the functional based
on fitting to the binding energy of deformed nuclei instead of
the fitting to spherical nuclei have been considered [31].

We would like to point out that for other EDFs, like the
ones of the Skyrme, Gogny, or relativistic mean-field type, the
number of parameters seems much higher, typically more than
ten. However, many of those parameters are implicitly used
to get a reasonable nuclear matter and neutron matter EOS.
The advantage of our KS-DFT procedure is that one clearly
separates the tasks of reproducing the nuclear matter EOS from
the most prominent finite size effects, namely the surface and
Coulomb energies and the spin-orbit potential.

III. IMPROVEMENTS OVER BCP AND RESULTS

A. New polynomial fitting

Following Refs. [1,31] we write the bulk part of the EDF
as

E∞
int[ρp, ρn] =

∫
dr[Ps(ρ)(1 − β2) + Pn(ρ)β2]ρ, (3)

where the interpolating polynomials for symmetric and pure
neutron matter, Ps(ρ) and Pn(ρ), respectively, read

Ps(ρ) =
5∑

n=1

an

(
ρ

ρ0

)n

, Pn(ρ) =
5∑

n=1

bn

(
ρ

ρ0n

)n

, (4)

where the reference densities are ρ0 = 0.16 fm−3 and ρ0n =
0.155 fm−3, respectively.

As compared to the former version of the BCP EDF, the
fit of the microscopic EOS has been redone to avoid some
rather strong oscillatory behavior in the density-dependent
incompressibility of the nuclear matter (see Sec. IV below)
when plotted as a function of density. To cure this unwanted
effect, the number of theoretical points is increased and a
fifth-order polynomial in the density is chosen for fitting the
microscopic EOS in symmetric nuclear matter in a wider range
of densities, up to 0.625 fm−3, instead of the prescription given
in Ref. [1]; see also Ref. [31]. Furthermore, special care has
been paid to the smoothness not only of the fitted EOS but
also of the density-dependent incompressibility. This has been
achieved by considering only polynomial fits with smooth high
order derivatives with respect to the density.

In Fig. 1 the microscopic EOS for nuclear and neutron
matter as well as the corresponding polynomial fits are shown
as functions of the density. In the bottom panel, the symmetry
energy computed using the polynomial fits as a function of
the density is also displayed. As discussed in Ref. [44], the
low-density behavior of the microscopic nuclear matter EOS
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FIG. 1. (Top) EOS of symmetric and neutron matter obtained
by the microscopic calculation (squares) and the corresponding
polynomial fits (solid lines). For comparison the microscopic EOS
of Ref. [45] are also displayed by open circles. (Bottom) Symmetry
energy obtained from the polynomial fits.

has a characteristic trend, usually not reproduced by Skyrme
and Gogny functionals (see also Refs. [18,31]), missing there
quite a substantial part of binding.

Because we want to construct the KS-DFT functional
on the basis of the microscopic calculations, the bulk part
E∞

int of the functional, directly related to a realistic EOS, is
determined once and for all as in Eq. (3), together with the local
density approximation. However, as mentioned before, slightly
different polynomial interpolations with different values of
E/A at saturation have been considered to improve the finite
nuclei results for the binding energies. The saturation density
has been kept fixed at the nominal value of 0.16 fm−3. For E/A
at saturation we have explored the interval between 15.97 and
16.03 MeV in steps of 0.01 MeV. For each value of E/A the
complete fitting process for finite nuclei has been performed
(see below). The optimal value for the saturation energy per
particle turns out to be 15.98 MeV. The fine tuning of E/A at
saturation is to be expected because of the extreme sensitivity
of the mass of heavy nuclei to this parameter. In addition, as the
fine tuning involves finite nuclei calculations where the surface
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microscopic EOS in symmetric nuclear matter in a wider range
of densities, up to 0.625 fm−3, instead of the prescription given
in Ref. [1]; see also Ref. [31]. Furthermore, special care has
been paid to the smoothness not only of the fitted EOS but
also of the density-dependent incompressibility. This has been
achieved by considering only polynomial fits with smooth high
order derivatives with respect to the density.

In Fig. 1 the microscopic EOS for nuclear and neutron
matter as well as the corresponding polynomial fits are shown
as functions of the density. In the bottom panel, the symmetry
energy computed using the polynomial fits as a function of
the density is also displayed. As discussed in Ref. [44], the
low-density behavior of the microscopic nuclear matter EOS
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FIG. 1. (Top) EOS of symmetric and neutron matter obtained
by the microscopic calculation (squares) and the corresponding
polynomial fits (solid lines). For comparison the microscopic EOS
of Ref. [45] are also displayed by open circles. (Bottom) Symmetry
energy obtained from the polynomial fits.

has a characteristic trend, usually not reproduced by Skyrme
and Gogny functionals (see also Refs. [18,31]), missing there
quite a substantial part of binding.

Because we want to construct the KS-DFT functional
on the basis of the microscopic calculations, the bulk part
E∞

int of the functional, directly related to a realistic EOS, is
determined once and for all as in Eq. (3), together with the local
density approximation. However, as mentioned before, slightly
different polynomial interpolations with different values of
E/A at saturation have been considered to improve the finite
nuclei results for the binding energies. The saturation density
has been kept fixed at the nominal value of 0.16 fm−3. For E/A
at saturation we have explored the interval between 15.97 and
16.03 MeV in steps of 0.01 MeV. For each value of E/A the
complete fitting process for finite nuclei has been performed
(see below). The optimal value for the saturation energy per
particle turns out to be 15.98 MeV. The fine tuning of E/A at
saturation is to be expected because of the extreme sensitivity
of the mass of heavy nuclei to this parameter. In addition, as the
fine tuning involves finite nuclei calculations where the surface
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obtained with successful mean-field models such as the Gogny
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relativistic mean-field parametrization NL3 [39].
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Interaction Terms: All the undetermined parameters of the
model appear in the interaction terms. We parameterize these
as

Eint(rn,rp) = (h � 1
9 ) Â

t=n,p

h̄2

2m
t

���———r

1/2
t

���
2

+
2

Â
j=0

E j(r)b 2 j +Eentrain(rn,rp),

(11a)

E j(r) = a jr
5/3 +b jr

2 + c jr
7/3, (11b)

where r is the total density, and b is the asymmetry:

r = rn +rp, b =
rn �rp

rn +rp
. (11c)

We include a correction to the gradient term in Ekin so that the
overall coefficient of the gradient term is h , and up to 9 pa-
rameters a j, b j, and c j for j 2 {0,1,2} describing the equation
of state for homogeneous nuclear matter. Three of these (for
j = 2) will be fixed by the equation of state of neutron matter
determined in ab initio calculations (see section II.C). Three of
the remaining six parameters (a0, c1, and a combination of a1
and b1) are found to be only marginally significant at the level
of changing the energy rms by d cE < 0.1MeV, so that in the
end we shall be left with only 4 significant parameters: h , b0,
c0, and a combination of a1 and b1.

We shall later include an entrainment term Eentrain with a
single parameter a , the form and meaning of which will be
elucidated in section IV, see Eq. (40). We find this term to
have very little significance for the static properties of nuclei,
but we will show that it has a pronounced effect on isovector
dynamics, such as the giant dipole resonance (GDR) mode.
For the moment while we discuss static properties we set it to
zero a = 0. One more parameter, x , will be discussed when
we will discuss the computation of shell effects in section IV.B.

The equations that determine the equilibrium densities of
a nucleus are obtained by minimizing the energy of a given
nucleus E(N,Z) =

R
d3rE [rn,rp] with respect to the densities,

while constraining the total numbers of neutrons N and protons
Z with two chemical potentials µn,p:
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B. Gradient Terms

Weizsäcker (1935) originally introduced the term proportional
to gradients of the densities |———r

1/2
t

|2 with a value of h = 1
that was later shown to be valid only if the density has small
amplitude rapid oscillations (Brack and Bhaduri, 1997; Drei-
zler and Gross, 1990; Jones and Gunnarsson, 1989). It was
later rigorously proven that a semi-classical expansion of the

non-interacting fermions in the extended Thomas-Fermi ap-
proximation (the limit of a slowly varying external potential)
yields the value hTF = 1/9, which defines the lowest order
gradient contributions in Ekin (9) (Brack and Bhaduri, 1997;
Dreizler and Gross, 1990; Jones and Gunnarsson, 1989). We
treat the coefficient h as a phenomenological parameter since
gradient terms can also be generated by interactions (Gebre-
mariam et al., 2010; Negele and Vautherin, 1972, 1975). Fit-
ting the nuclear masses yields values of h close to 0.5, roughly
half-way between the semi-classical and Weizsäcker values.

A semi-classical expansion of non-interacting
fermions (Brack and Bhaduri, 1997; Dreizler and Gross, 1990)
yields the following higher order corrections to Ekin, that we
have not included in Eq. (9):
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This type of correction has been studied in nuclear physics
and shown to lead to quite accurate estimates of the kinetic
energy density within the extended Thomas-Fermi approxi-
mation (Brack et al., 1985, 1976; Brack and Bhaduri, 1997).
As within a DFT, such terms can also arise due to the finite
range of the interactions in a matter similar to some Skyrme
interactions (Gebremariam et al., 2010; Negele and Vautherin,
1972, 1975). However, these terms – even with adjustable
parameters – do not significantly change the quality of the
mass fits, so we do not consider them in our main analysis.
Including them perturbatively in the fit, however, does improve
the fit of the charge radii. For example, fitting the overall
coefficient reduce the charge radii residual cr (see details in
Section III) from cr ⇡ 0.14fm to cr ⇡ 0.09fm. Fitting each
of the three terms independently further reduces the residuals
to cr ⇡ 0.06fm. We do not include such fourth-order terms
in our functional as they can lead to a complex behavior of
the emerging equation for the densities, which can be difficult
to rationalize. (See, for example, the analysis of fourth order
differential equations arising in case of non-local potentials
by Bulgac (1988).) Higher order gradient corrections than
Eq. (13) lead to an unphysical behavior of the densities in the
classically forbidden regions. The semi-classical expansion
has an asymptotic character (Jones and Gunnarsson, 1989). It
is known that corrections beyond second order do not always
lead to improvements (Jones and Gunnarsson, 1989).

We point out one more property that will be discussed in
more detail in section IV: a value of h = 1/4 corresponds to a
dynamical theory of superfluid neutron and proton pairs. One
might naïvely have thought of h ⇡ 0.5 as an effective nucleon
pair mass meff ⇡ 2m, but this leaves the potential U

t

wrong
by a factor of 2. The parameter h may simply be thought of
as a way to control the falloff of the densities in the surface
region where the interaction effects are still strong. One should
not expect to obtain the correct asymptotic behavior of the
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Gogny interaction D1S in the pairing channel. The Dirac-
Hartree-Bogoliubov equations and the equations for the meson
fields are solved by expanding the nucleon spinors and the
meson fields in terms of the eigenfunctions of a deformed
axially symmetric oscillator potential. A simple blocking
procedure is used in the calculation of odd-proton and/or
odd-neutron systems. The blocking calculations are performed
without breaking the time-reversal symmetry. We notice that
for both α-decay chains the trend of experimental transition
energies is accurately reproduced by our calculations. For
the odd-odd nucleus 288115, in particular, the theoretical Qα

values are in excellent agreement with the experimental data.
For completeness, in Fig. 6 we also include the ground-state
quadrupole deformation parameters β2 of the superheavy
nuclei that belong to the two α-decay chains.

IV. SUMMARY AND CONCLUSIONS

Effective nuclear interactions with density-dependent
meson-nucleon vertex functions represent a significant im-
provement in the relativistic self-consistent mean-field de-
scription of the nuclear many-body problem. In a number
of recent studies it has been shown that, in comparison
with standard nonlinear meson-exchange models, this class
of effective interactions provides a more realistic description
of asymmetric nuclear matter, neutron matter, and finite nuclei.
In particular, these interactions allow for a softer equation of
state of nuclear matter (i.e., lower incompressibility) and a
lower value of the symmetry energy at saturation.

In this work we have adjusted a new, improved rela-
tivistic mean-field effective interaction with explicit density

dependence of the meson-nucleon couplings. In comparison
with the previous version DD-ME1 that was derived in
Ref. [10], the new interaction, denoted DD-ME2, takes into
account the results of relativistic RPA analyses [11,12],
which provide additional constraints on the parameters that
characterize the isoscalar and isovector channels. To illustrate
the principal features of the new interaction, we have analyzed
ground-state properties and excitation energies of giant reso-
nances. Ground states of spherical and deformed nuclei have
been calculated in the RHB model with the DD-ME2 effective
interaction in the particle-hole channel, and with the Gogny in-
teraction D1S in the pairing channel. The fully self-consistent
RRPA and R(Q)RPA have been used to calculate excitation en-
ergies of giant resonances in spherical nuclei. When compared
with the results obtained with DD-ME1, the new interaction
considerably improves the agreement with experimental data.
We particularly emphasize the very good results for the
masses of approximately 200 nuclei and for the isoscalar
monopole and isovector dipole resonances and the excellent
agreement with the recently reported α-decay chains of the new
element 115. DD-ME2 represents a valuable addition to the
set of relativistic mean-field interactions. Future applications
will include the calculation of a microscopic mass table,
mapping the drip lines, and a more extensive study of giant
resonances.
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self-energies in the local density approximation [13,15,16] or
by adjusting the parameters of an assumed phenomenological
density dependence of the meson-nucleon couplings to repro-
duce properties of symmetric and asymmetric nuclear matter
and finite nuclei [10,14]. In the phenomenological approach
of Refs. [10,13,14] the coupling of the σ meson and ω meson
to the nucleon field reads

gi(ρ) = gi(ρsat)fi(x) for i = σ,ω, (5)

where

fi(x) = ai

1 + bi(x + di)2

1 + ci(x + di)2
(6)

is a function of x = ρ/ρsat, and ρsat denotes the baryon density
at saturation in symmetric nuclear matter. The eight real
parameters in (6) are not independent. The five constraints—
fi(1) = 1, f ′′

σ (1) = f ′′
ω (1), and f ′′

i (0) = 0—reduce the number
of independent parameters to three. Three additional param-
eters in the isoscalar channel are gσ (ρsat), gω(ρsat), and mσ ,
the mass of the phenomenological σ meson. For the ρ-meson
coupling the functional form of the density dependence is
suggested by Dirac-Brueckner calculations of asymmetric
nuclear matter [16]:

gρ(ρ) = gρ(ρsat) exp[−aρ(x − 1)]. (7)

The isovector channel is parametrized by gρ(ρsat) and aρ .
Usually the free values are used for the masses of the ω and
ρ mesons: mω = 783 MeV and mρ = 763 MeV. In principle
one could also consider the density dependence of the meson
masses. However, since the effective meson-nucleon coupling
in nuclear matter is determined by the ratio g/m, the choice
of a phenomenological density dependence of the couplings
makes an explicit density dependence of the masses redundant.

The eight independent parameters (seven coupling pa-
rameters and the mass of the σ meson) are adjusted to
reproduce the properties of symmetric and asymmetric nuclear
matter, binding energies, charge radii, and neutron radii of
spherical nuclei. In Ref. [10] we introduced the density-
dependent meson-exchange effective interaction (DD-ME1),
whose parameters are displayed in Table I. The seven cou-
pling parameters and the σ -meson mass were simultaneously
adjusted to properties of symmetric and asymmetric nuclear
matter, and to ground-state properties of twelve spherical
nuclei [17–19]. For the open-shell nuclei pairing correlations
were treated in the BCS approximation with empirical pairing
gaps (five-point formula).

In Ref. [10] the RHB model with the density-dependent
interaction DD-ME1 in the ph channel, and with the finite-
range Gogny interaction D1S [20] in the pp channel, was
tested in the analysis of ground-state properties of the Sn
and Pb isotopic chains. It has been shown that, compared
to standard nonlinear relativistic mean-field effective forces,
the interaction DD-ME1 has better isovector properties and
therefore provides an improved description of asymmet-
ric nuclear matter, neutron matter, and nuclei far from
stability. The DD-ME1 interaction has also recently been
tested in the calculation of deformed nuclei [21]. Ground-
state properties of six isotopic chains (60 ! Z ! 70) in the
region of rare-earth nuclei were calculated by using the

TABLE I. The parameters of the effective interactions DD-ME2
and DD-ME1. See text for description.

DD-ME2 DD-ME1

mσ 550.1238 549.5255
mω 783.0000 783.0000
mρ 763.0000 763.0000
gσ (ρsat) 10.5396 10.4434
gω(ρsat) 13.0189 12.8939
gρ(ρsat) 3.6836 3.8053
aσ 1.3881 1.3854
bσ 1.0943 0.9781
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bω 0.9240 0.8525
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RHB model, and a very good agreement was obtained in
comparison with experimental data on total binding energies,
charge isotope shifts, and quadrupole deformation para-
meters.

In Refs. [11,12] we derived the relativistic (quasiparticle)
random phase approximation based on effective interactions
with density-dependent meson-nucleon couplings. The ex-
plicit density dependence of the vertex functions introduces
rearrangement terms in the residual two-body interaction.
Illustrative calculations were performed for the isoscalar
monopole, isovector dipole, and isoscalar quadrupole response
of spherical nuclei. Starting from DD-ME1, and by construct-
ing families of interactions with some given characteristic
(compressibility, symmetry energy, and effective mass), it has
been shown how the comparison of the R(Q)RPA results on
multipole giant resonances with experimental data can be used
to constrain the parameters that characterize the isoscalar
and isovector channel of the density-dependent effective
interactions. In particular, in Ref. [12] we have shown that the
comparison of the calculated excitation energies with the ex-
perimental data on the giant monopole resonances restricts the
nuclear matter compression modulus to Knm ≈ 250–270 MeV.
To reproduce the isovector giant dipole resonance in 208Pb
and the available data on differences between neutron and
proton radii, the range of the nuclear matter symmetry energy
at saturation (volume asymmetry) is 32 MeV ! a4 ! 36 MeV.
Very recently [22] DD-ME1 has also been employed in the
proton-neutron R(Q)RPA analysis of charge-exchange modes,
specifically isobaric analog resonances and Gamow-Teller
resonances in spherical nuclei.

Taking into account all these results, in this work we
adjust a new phenomenological density-dependent interaction
to be used in RMF+BCS, RHB, and R(Q)RPA calculations
of ground states and excitations of spherical and deformed
nuclei. Similar to the procedure used in Ref. [10] to adjust
the interaction DD-ME1, the seven independent coupling
parameters and the mass of the σ -meson are adjusted si-
multaneously to properties of nuclear matter and to binding
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self-energies in the local density approximation [13,15,16] or
by adjusting the parameters of an assumed phenomenological
density dependence of the meson-nucleon couplings to repro-
duce properties of symmetric and asymmetric nuclear matter
and finite nuclei [10,14]. In the phenomenological approach
of Refs. [10,13,14] the coupling of the σ meson and ω meson
to the nucleon field reads

gi(ρ) = gi(ρsat)fi(x) for i = σ,ω, (5)

where
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1 + bi(x + di)2

1 + ci(x + di)2
(6)

is a function of x = ρ/ρsat, and ρsat denotes the baryon density
at saturation in symmetric nuclear matter. The eight real
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fi(1) = 1, f ′′

σ (1) = f ′′
ω (1), and f ′′

i (0) = 0—reduce the number
of independent parameters to three. Three additional param-
eters in the isoscalar channel are gσ (ρsat), gω(ρsat), and mσ ,
the mass of the phenomenological σ meson. For the ρ-meson
coupling the functional form of the density dependence is
suggested by Dirac-Brueckner calculations of asymmetric
nuclear matter [16]:

gρ(ρ) = gρ(ρsat) exp[−aρ(x − 1)]. (7)

The isovector channel is parametrized by gρ(ρsat) and aρ .
Usually the free values are used for the masses of the ω and
ρ mesons: mω = 783 MeV and mρ = 763 MeV. In principle
one could also consider the density dependence of the meson
masses. However, since the effective meson-nucleon coupling
in nuclear matter is determined by the ratio g/m, the choice
of a phenomenological density dependence of the couplings
makes an explicit density dependence of the masses redundant.

The eight independent parameters (seven coupling pa-
rameters and the mass of the σ meson) are adjusted to
reproduce the properties of symmetric and asymmetric nuclear
matter, binding energies, charge radii, and neutron radii of
spherical nuclei. In Ref. [10] we introduced the density-
dependent meson-exchange effective interaction (DD-ME1),
whose parameters are displayed in Table I. The seven cou-
pling parameters and the σ -meson mass were simultaneously
adjusted to properties of symmetric and asymmetric nuclear
matter, and to ground-state properties of twelve spherical
nuclei [17–19]. For the open-shell nuclei pairing correlations
were treated in the BCS approximation with empirical pairing
gaps (five-point formula).

In Ref. [10] the RHB model with the density-dependent
interaction DD-ME1 in the ph channel, and with the finite-
range Gogny interaction D1S [20] in the pp channel, was
tested in the analysis of ground-state properties of the Sn
and Pb isotopic chains. It has been shown that, compared
to standard nonlinear relativistic mean-field effective forces,
the interaction DD-ME1 has better isovector properties and
therefore provides an improved description of asymmet-
ric nuclear matter, neutron matter, and nuclei far from
stability. The DD-ME1 interaction has also recently been
tested in the calculation of deformed nuclei [21]. Ground-
state properties of six isotopic chains (60 ! Z ! 70) in the
region of rare-earth nuclei were calculated by using the
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RHB model, and a very good agreement was obtained in
comparison with experimental data on total binding energies,
charge isotope shifts, and quadrupole deformation para-
meters.

In Refs. [11,12] we derived the relativistic (quasiparticle)
random phase approximation based on effective interactions
with density-dependent meson-nucleon couplings. The ex-
plicit density dependence of the vertex functions introduces
rearrangement terms in the residual two-body interaction.
Illustrative calculations were performed for the isoscalar
monopole, isovector dipole, and isoscalar quadrupole response
of spherical nuclei. Starting from DD-ME1, and by construct-
ing families of interactions with some given characteristic
(compressibility, symmetry energy, and effective mass), it has
been shown how the comparison of the R(Q)RPA results on
multipole giant resonances with experimental data can be used
to constrain the parameters that characterize the isoscalar
and isovector channel of the density-dependent effective
interactions. In particular, in Ref. [12] we have shown that the
comparison of the calculated excitation energies with the ex-
perimental data on the giant monopole resonances restricts the
nuclear matter compression modulus to Knm ≈ 250–270 MeV.
To reproduce the isovector giant dipole resonance in 208Pb
and the available data on differences between neutron and
proton radii, the range of the nuclear matter symmetry energy
at saturation (volume asymmetry) is 32 MeV ! a4 ! 36 MeV.
Very recently [22] DD-ME1 has also been employed in the
proton-neutron R(Q)RPA analysis of charge-exchange modes,
specifically isobaric analog resonances and Gamow-Teller
resonances in spherical nuclei.

Taking into account all these results, in this work we
adjust a new phenomenological density-dependent interaction
to be used in RMF+BCS, RHB, and R(Q)RPA calculations
of ground states and excitations of spherical and deformed
nuclei. Similar to the procedure used in Ref. [10] to adjust
the interaction DD-ME1, the seven independent coupling
parameters and the mass of the σ -meson are adjusted si-
multaneously to properties of nuclear matter and to binding
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density dependence of the meson-nucleon couplings to repro-
duce properties of symmetric and asymmetric nuclear matter
and finite nuclei [10,14]. In the phenomenological approach
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to the nucleon field reads

gi(ρ) = gi(ρsat)fi(x) for i = σ,ω, (5)

where
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is a function of x = ρ/ρsat, and ρsat denotes the baryon density
at saturation in symmetric nuclear matter. The eight real
parameters in (6) are not independent. The five constraints—
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i (0) = 0—reduce the number
of independent parameters to three. Three additional param-
eters in the isoscalar channel are gσ (ρsat), gω(ρsat), and mσ ,
the mass of the phenomenological σ meson. For the ρ-meson
coupling the functional form of the density dependence is
suggested by Dirac-Brueckner calculations of asymmetric
nuclear matter [16]:

gρ(ρ) = gρ(ρsat) exp[−aρ(x − 1)]. (7)

The isovector channel is parametrized by gρ(ρsat) and aρ .
Usually the free values are used for the masses of the ω and
ρ mesons: mω = 783 MeV and mρ = 763 MeV. In principle
one could also consider the density dependence of the meson
masses. However, since the effective meson-nucleon coupling
in nuclear matter is determined by the ratio g/m, the choice
of a phenomenological density dependence of the couplings
makes an explicit density dependence of the masses redundant.

The eight independent parameters (seven coupling pa-
rameters and the mass of the σ meson) are adjusted to
reproduce the properties of symmetric and asymmetric nuclear
matter, binding energies, charge radii, and neutron radii of
spherical nuclei. In Ref. [10] we introduced the density-
dependent meson-exchange effective interaction (DD-ME1),
whose parameters are displayed in Table I. The seven cou-
pling parameters and the σ -meson mass were simultaneously
adjusted to properties of symmetric and asymmetric nuclear
matter, and to ground-state properties of twelve spherical
nuclei [17–19]. For the open-shell nuclei pairing correlations
were treated in the BCS approximation with empirical pairing
gaps (five-point formula).

In Ref. [10] the RHB model with the density-dependent
interaction DD-ME1 in the ph channel, and with the finite-
range Gogny interaction D1S [20] in the pp channel, was
tested in the analysis of ground-state properties of the Sn
and Pb isotopic chains. It has been shown that, compared
to standard nonlinear relativistic mean-field effective forces,
the interaction DD-ME1 has better isovector properties and
therefore provides an improved description of asymmet-
ric nuclear matter, neutron matter, and nuclei far from
stability. The DD-ME1 interaction has also recently been
tested in the calculation of deformed nuclei [21]. Ground-
state properties of six isotopic chains (60 ! Z ! 70) in the
region of rare-earth nuclei were calculated by using the

TABLE I. The parameters of the effective interactions DD-ME2
and DD-ME1. See text for description.
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RHB model, and a very good agreement was obtained in
comparison with experimental data on total binding energies,
charge isotope shifts, and quadrupole deformation para-
meters.

In Refs. [11,12] we derived the relativistic (quasiparticle)
random phase approximation based on effective interactions
with density-dependent meson-nucleon couplings. The ex-
plicit density dependence of the vertex functions introduces
rearrangement terms in the residual two-body interaction.
Illustrative calculations were performed for the isoscalar
monopole, isovector dipole, and isoscalar quadrupole response
of spherical nuclei. Starting from DD-ME1, and by construct-
ing families of interactions with some given characteristic
(compressibility, symmetry energy, and effective mass), it has
been shown how the comparison of the R(Q)RPA results on
multipole giant resonances with experimental data can be used
to constrain the parameters that characterize the isoscalar
and isovector channel of the density-dependent effective
interactions. In particular, in Ref. [12] we have shown that the
comparison of the calculated excitation energies with the ex-
perimental data on the giant monopole resonances restricts the
nuclear matter compression modulus to Knm ≈ 250–270 MeV.
To reproduce the isovector giant dipole resonance in 208Pb
and the available data on differences between neutron and
proton radii, the range of the nuclear matter symmetry energy
at saturation (volume asymmetry) is 32 MeV ! a4 ! 36 MeV.
Very recently [22] DD-ME1 has also been employed in the
proton-neutron R(Q)RPA analysis of charge-exchange modes,
specifically isobaric analog resonances and Gamow-Teller
resonances in spherical nuclei.

Taking into account all these results, in this work we
adjust a new phenomenological density-dependent interaction
to be used in RMF+BCS, RHB, and R(Q)RPA calculations
of ground states and excitations of spherical and deformed
nuclei. Similar to the procedure used in Ref. [10] to adjust
the interaction DD-ME1, the seven independent coupling
parameters and the mass of the σ -meson are adjusted si-
multaneously to properties of nuclear matter and to binding
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self-energies in the local density approximation [13,15,16] or
by adjusting the parameters of an assumed phenomenological
density dependence of the meson-nucleon couplings to repro-
duce properties of symmetric and asymmetric nuclear matter
and finite nuclei [10,14]. In the phenomenological approach
of Refs. [10,13,14] the coupling of the σ meson and ω meson
to the nucleon field reads

gi(ρ) = gi(ρsat)fi(x) for i = σ,ω, (5)

where
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1 + bi(x + di)2

1 + ci(x + di)2
(6)

is a function of x = ρ/ρsat, and ρsat denotes the baryon density
at saturation in symmetric nuclear matter. The eight real
parameters in (6) are not independent. The five constraints—
fi(1) = 1, f ′′

σ (1) = f ′′
ω (1), and f ′′

i (0) = 0—reduce the number
of independent parameters to three. Three additional param-
eters in the isoscalar channel are gσ (ρsat), gω(ρsat), and mσ ,
the mass of the phenomenological σ meson. For the ρ-meson
coupling the functional form of the density dependence is
suggested by Dirac-Brueckner calculations of asymmetric
nuclear matter [16]:

gρ(ρ) = gρ(ρsat) exp[−aρ(x − 1)]. (7)

The isovector channel is parametrized by gρ(ρsat) and aρ .
Usually the free values are used for the masses of the ω and
ρ mesons: mω = 783 MeV and mρ = 763 MeV. In principle
one could also consider the density dependence of the meson
masses. However, since the effective meson-nucleon coupling
in nuclear matter is determined by the ratio g/m, the choice
of a phenomenological density dependence of the couplings
makes an explicit density dependence of the masses redundant.

The eight independent parameters (seven coupling pa-
rameters and the mass of the σ meson) are adjusted to
reproduce the properties of symmetric and asymmetric nuclear
matter, binding energies, charge radii, and neutron radii of
spherical nuclei. In Ref. [10] we introduced the density-
dependent meson-exchange effective interaction (DD-ME1),
whose parameters are displayed in Table I. The seven cou-
pling parameters and the σ -meson mass were simultaneously
adjusted to properties of symmetric and asymmetric nuclear
matter, and to ground-state properties of twelve spherical
nuclei [17–19]. For the open-shell nuclei pairing correlations
were treated in the BCS approximation with empirical pairing
gaps (five-point formula).

In Ref. [10] the RHB model with the density-dependent
interaction DD-ME1 in the ph channel, and with the finite-
range Gogny interaction D1S [20] in the pp channel, was
tested in the analysis of ground-state properties of the Sn
and Pb isotopic chains. It has been shown that, compared
to standard nonlinear relativistic mean-field effective forces,
the interaction DD-ME1 has better isovector properties and
therefore provides an improved description of asymmet-
ric nuclear matter, neutron matter, and nuclei far from
stability. The DD-ME1 interaction has also recently been
tested in the calculation of deformed nuclei [21]. Ground-
state properties of six isotopic chains (60 ! Z ! 70) in the
region of rare-earth nuclei were calculated by using the
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RHB model, and a very good agreement was obtained in
comparison with experimental data on total binding energies,
charge isotope shifts, and quadrupole deformation para-
meters.

In Refs. [11,12] we derived the relativistic (quasiparticle)
random phase approximation based on effective interactions
with density-dependent meson-nucleon couplings. The ex-
plicit density dependence of the vertex functions introduces
rearrangement terms in the residual two-body interaction.
Illustrative calculations were performed for the isoscalar
monopole, isovector dipole, and isoscalar quadrupole response
of spherical nuclei. Starting from DD-ME1, and by construct-
ing families of interactions with some given characteristic
(compressibility, symmetry energy, and effective mass), it has
been shown how the comparison of the R(Q)RPA results on
multipole giant resonances with experimental data can be used
to constrain the parameters that characterize the isoscalar
and isovector channel of the density-dependent effective
interactions. In particular, in Ref. [12] we have shown that the
comparison of the calculated excitation energies with the ex-
perimental data on the giant monopole resonances restricts the
nuclear matter compression modulus to Knm ≈ 250–270 MeV.
To reproduce the isovector giant dipole resonance in 208Pb
and the available data on differences between neutron and
proton radii, the range of the nuclear matter symmetry energy
at saturation (volume asymmetry) is 32 MeV ! a4 ! 36 MeV.
Very recently [22] DD-ME1 has also been employed in the
proton-neutron R(Q)RPA analysis of charge-exchange modes,
specifically isobaric analog resonances and Gamow-Teller
resonances in spherical nuclei.

Taking into account all these results, in this work we
adjust a new phenomenological density-dependent interaction
to be used in RMF+BCS, RHB, and R(Q)RPA calculations
of ground states and excitations of spherical and deformed
nuclei. Similar to the procedure used in Ref. [10] to adjust
the interaction DD-ME1, the seven independent coupling
parameters and the mass of the σ -meson are adjusted si-
multaneously to properties of nuclear matter and to binding

024312-3

P. Finelli et al. / Nuclear Physics A 770 (2006) 1–31 3

The starting point is the description of nuclear matter based on the chiral effective Lagrangian
with pions and nucleons [13–16], recently improved by including explicit !(1232) degrees of
freedom [17]. The relevant “small” scales are the Fermi momentum kf , the pion mass mπ and
the !–N mass difference ∆ ≡ M! − MN ≃ 2.1mπ , all of which are well separated from the
characteristic scale of spontaneous chiral symmetry breaking, 4πfπ ≃ 1.16 GeV with the pion
decay constant fπ = 92.4 MeV. The calculations have been performed to three-loop order in the
energy density. They incorporate the one-pion exchange Fock term, iterated one-pion exchange
and irreducible two-pion exchange, including one or two intermediate !’s. The resulting nuclear
matter equation of state is given as an expansion in powers of the Fermi momentum kf . The ex-
pansion coefficients are functions of kf /mπ and ∆/mπ , the dimensionless ratios of the relevant
small scales. Divergent momentum space loop integrals are regularized by introducing subtrac-
tion constants in the spectral representations of these terms [17]. The (few) subtraction constants
are the only parameters in this approach. They equivalently correspond to two- and three-nucleon
contact interactions (and derivatives thereof), encoding short-distance dynamics not resolved in
detail at the characteristic momentum scale kf ≪ 4πfπ . The finite parts of the energy density,
written in closed form as functions of kf /mπ and ∆/mπ , represent long and intermediate range
(chiral) dynamics with input fixed entirely in the πN sector. The low-energy constants (contact
terms) are adjusted to reproduce basic properties of symmetric and asymmetric nuclear matter.

A first version (not yet including explicitly the !(1232)) of this microscopic approach has
been tested in the analysis of bulk and single-nucleon properties of finite nuclei [11,12]. It was
shown that chiral (two-pion exchange) fluctuations play a prominent role in nuclear binding and
in the saturation mechanism, while additional strong scalar and vector mean fields of about equal
magnitude and opposite sign, induced by changes of the QCD vacuum in the presence of baryonic
matter, generate the large effective spin–orbit potential in finite nuclei. A first series of promising
results for N ≈ Z nuclei demonstrated that such an approach to nuclear dynamics, constrained
by the chiral symmetry breaking pattern and the condensate structure of low-energy QCD, has
the capability of describing finite nuclei and their properties at a quantitative level comparable
with phenomenological self-consistent mean-field models.

Chiral effective field theories are systematically improved by introducing explicit !(1232)

degrees of freedom. Much better isospin properties of nuclear matter are found by including
chiral πN!-couplings [17]. This has an ameliorating influence on the isovector channel of the
nuclear energy density functional for finite nuclei, and much improved results are expected for
ground-state properties of N ̸= Z nuclei. In the present work the effects of the inclusion of chiral
πN!-dynamics on the nuclear energy density functional will be investigated. Specifically, the
chiral nuclear matter energy density functional will be mapped onto the exchange-correlation
energy density functional of a covariant point-coupling model for finite nuclei, including gradi-
ent corrections. This model will be employed in the description of ground-state properties of a
broad range of spherical and deformed nuclei. The results will be analyzed in comparison with
experimental data on binding energies, charge radii, neutron radii and deformation parameters
for several isotopic chains.

In Section 2 we construct the nuclear energy density functional based on the conjectures
mentioned previously. Next, in order to deal with a broad range of finite (medium-heavy and
heavy) nuclei, it is convenient to formulate an equivalent covariant point-coupling model with
density-dependent contact interactions. The mapping of the nucleon self-energies in nuclear mat-
ter, calculated using chiral dynamics, onto those of the point coupling model for finite nuclei and
the fine-tuning of the remaining parameters is described in Section 3. In Section 4 the resulting
self-consistent equations are solved for ground-state properties of a number of spherical and de-
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two-pion exchange pieces. Additional short-range three-body contributions and effects of higher
loops which feed back into k6

f terms are parameterized by the constants b6 and a6, respectively.
In Ref. [17] the counter terms bi and ai have been adjusted to reproduce nuclear and neu-

tron matter properties. The resulting equation of state of isospin-symmetric matter is in good
agreement with recent microscopic calculations [41], though with a somewhat too high incom-
pressibility (K0 = 304 MeV). The calculated real part of the nucleon single-particle potential,
U(p, kf ), is very close to the result of relativistic Dirac–Brueckner calculations (see Ref. [42]).
Isospin properties of nuclear matter and the energy per particle in neutron matter are significantly
improved by incorporating explicit πN"-dynamics, in comparison with earlier calculations (see
Ref. [13]) which included only nucleons in two-pion exchange processes.

While gross properties of infinite nuclear matter are useful for orientation, the large amount
of nuclear observables studied in the present work provides a far more accurate data base that
permits a better adjustment of the constants bi and ai . We refer to the more detailed discussion
in Section 3.3 but point here already to the interesting result that the best fit values for b3 and a3
turn out to be within only a few percent of those determined in the ChPT calculation of nuclear
and neutron matter, while b5 = a5 = 0 can still be maintained. The only major difference is
in the short-distance three-body term proportional to b6 for which the fit to the broad range of
nuclear data requires stronger attraction. Throughout the procedure, the input values for the chiral
pion–nucleon and πN" couplings are strictly kept fixed by pion–nucleon scattering observables
in vacuum. These couplings determine the finite parts of intermediate-range one- and two-pion
exchange contributions to the energy density as predicted by in-medium ChPT.

In the simplest DFT approach, the exchange-correlation energy for a finite system is deter-
mined in the local density approximation (LDA) from the exchange-correlation functional of the
corresponding infinite homogeneous system, replacing the constant density ρ by the local density
ρ(r) of the actual inhomogeneous system. In our case the exchange-correlation terms of the nu-
clear density functional are determined within LDA by equating the corresponding self-energies
in the single-nucleon Dirac equation (25), with those arising from the in-medium chiral pertur-
bation theory calculation of πN"-dynamics in homogeneous isospin symmetric and asymmetric
nuclear matter. Steps beyond the LDA will be taken by adding surface terms involving derivatives
of the density.

The density-dependent couplings G
(π)
i are expressed as polynomials in fractional powers of

the baryon density:

G
(π)
i (ρ) = ci1 + ci2ρ

1/3 + ci3ρ
2/3 + ci4ρ + · · · (i = S,V,TS,TV). (41)

The detailed derivation of the constants cij is presented in Appendix A.
The coefficient D

(π)
S of the derivative term in the equivalent point-coupling model (Eqs. (26)

and (28)) can be determined from ChPT calculations for inhomogeneous nuclear matter. The
density-matrix expansion method [43] is used to derive the in-medium insertion in the nucleon
propagator, as shown in Refs. [14,17]. The isoscalar nuclear energy density emerging from chiral
pion–nucleon dynamics has the form:

E(ρ,∇ρ) = ρĒ(kf ) + (∇ρ)2F∇(kf ) + · · · . (42)

The coefficients have been compared with the corresponding phenomenological parameters of
various Skyrme type energy density functionals. In particular, the gradient term (∇ρ)2F∇(kf )

plays an important role in shaping the nuclear surface [44]. While the applicability of the density-
matrix expansion is questionable at very low densities, an important result of Refs. [14,17] is that
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Lfree = ψ̄
(
iγµ∂µ − MN

)
ψ, (6)

L(1)
int = − 1

2
GS(ρ̂)(ψ̄ψ)(ψ̄ψ) − 1

2
GV(ρ̂)(ψ̄γµψ)

(
ψ̄γ µψ

)

− 1
2

GTS(ρ̂)(ψ̄ τ⃗ψ) · (ψ̄ τ⃗ψ) − 1
2

GTV(ρ̂)(ψ̄ τ⃗ γµψ) ·
(
ψ̄ τ⃗ γ µψ

)
, (7)

L(2)
int = −1

2
DS∂ν(ψ̄ψ)∂ν(ψ̄ψ), (8)

Lem = eAµψ̄
1 + τ3

2
γµψ − 1

4
FµνF

µν, (9)

where ψ is the Dirac field of the nucleon with its two isospin components (p and n). Vectors in
isospin space are denoted by arrows. In addition to the free nucleon Lagrangian Lfree and the
interaction terms contained in L(1)

int , when applied to finite nuclei, the model must include the
coupling Lem of the protons to the electromagnetic field Aµ with Fµν = ∂µAν − ∂νAµ, and a
derivative (surface) term L(2)

int . One could, of course, construct additional derivative terms in L(2)
int ,

further generalized to include density-dependent strength parameters. However, as we shall see,
there appears to be no need in practical applications to go beyond the simplest ansatz (8) with
a constant DS. In fact, present data on nuclear ground states constrain only this single isoscalar
derivative term [23].

The variational principle δL/δψ̄ = 0 applied to the Lagrangian (5) leads to the self-consistent
single-nucleon Dirac equations, the relativistic analogue of the (non-relativistic) Kohn–Sham
equations. The nuclear dynamics produced by chiral (pionic) fluctuations in the medium is now
encoded in the density dependence of the interaction vertices.

In the framework of relativistic density functional theory [6,24–26], the density-dependent
couplings are functions of the 4-current jµ:

jµ = ψ̄γ µψ = ρ̂uµ, (10)

where uµ is the 4-velocity defined as (1−v2)−1/2(1,v). We work in the rest-frame of the nuclear
system with v = 0.

The couplings Gi(ρ̂) (i = S,V,TS,TV) are decomposed as follows:

Gi(ρ̂) = G
(0)
i + G

(π)
i (ρ̂) (for i = S,V),

Gi(ρ̂) = G
(π)
i (ρ̂) (for i = TS,TV), (11)

into density-independent parts G
(0)
i which arise from strong isoscalar scalar and vector back-

ground fields, and density-dependent parts G
(π)
i (ρ̂) generated by (regularized) one- and two-pion

exchange dynamics. As in our previous work, it is assumed that only pionic processes contribute
to the isovector channels.

The relativistic density functional describing the ground-state energy of the system can be
rewritten as a sum of four distinct terms:

E0[ρ̂] = Efree[ρ̂] + EH[ρ̂] + Ecoul[ρ̂] + Eπ [ρ̂], (12)

with

Efree[ρ̂] =
∫

d3r ⟨φ0|ψ̄[−iγ · ∇ + MN]ψ |φ0⟩, (13)

EH[ρ̂] = 1
2

∫
d3r

{
⟨φ0|G(0)

S (ψ̄ψ)2|φ0⟩ + ⟨φ0|G(0)
V (ψ̄γµψ)2|φ0⟩

}
, (14)
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two-pion exchange pieces. Additional short-range three-body contributions and effects of higher
loops which feed back into k6

f terms are parameterized by the constants b6 and a6, respectively.
In Ref. [17] the counter terms bi and ai have been adjusted to reproduce nuclear and neu-

tron matter properties. The resulting equation of state of isospin-symmetric matter is in good
agreement with recent microscopic calculations [41], though with a somewhat too high incom-
pressibility (K0 = 304 MeV). The calculated real part of the nucleon single-particle potential,
U(p, kf ), is very close to the result of relativistic Dirac–Brueckner calculations (see Ref. [42]).
Isospin properties of nuclear matter and the energy per particle in neutron matter are significantly
improved by incorporating explicit πN"-dynamics, in comparison with earlier calculations (see
Ref. [13]) which included only nucleons in two-pion exchange processes.

While gross properties of infinite nuclear matter are useful for orientation, the large amount
of nuclear observables studied in the present work provides a far more accurate data base that
permits a better adjustment of the constants bi and ai . We refer to the more detailed discussion
in Section 3.3 but point here already to the interesting result that the best fit values for b3 and a3
turn out to be within only a few percent of those determined in the ChPT calculation of nuclear
and neutron matter, while b5 = a5 = 0 can still be maintained. The only major difference is
in the short-distance three-body term proportional to b6 for which the fit to the broad range of
nuclear data requires stronger attraction. Throughout the procedure, the input values for the chiral
pion–nucleon and πN" couplings are strictly kept fixed by pion–nucleon scattering observables
in vacuum. These couplings determine the finite parts of intermediate-range one- and two-pion
exchange contributions to the energy density as predicted by in-medium ChPT.

In the simplest DFT approach, the exchange-correlation energy for a finite system is deter-
mined in the local density approximation (LDA) from the exchange-correlation functional of the
corresponding infinite homogeneous system, replacing the constant density ρ by the local density
ρ(r) of the actual inhomogeneous system. In our case the exchange-correlation terms of the nu-
clear density functional are determined within LDA by equating the corresponding self-energies
in the single-nucleon Dirac equation (25), with those arising from the in-medium chiral pertur-
bation theory calculation of πN"-dynamics in homogeneous isospin symmetric and asymmetric
nuclear matter. Steps beyond the LDA will be taken by adding surface terms involving derivatives
of the density.

The density-dependent couplings G
(π)
i are expressed as polynomials in fractional powers of

the baryon density:

G
(π)
i (ρ) = ci1 + ci2ρ

1/3 + ci3ρ
2/3 + ci4ρ + · · · (i = S,V,TS,TV). (41)

The detailed derivation of the constants cij is presented in Appendix A.
The coefficient D

(π)
S of the derivative term in the equivalent point-coupling model (Eqs. (26)

and (28)) can be determined from ChPT calculations for inhomogeneous nuclear matter. The
density-matrix expansion method [43] is used to derive the in-medium insertion in the nucleon
propagator, as shown in Refs. [14,17]. The isoscalar nuclear energy density emerging from chiral
pion–nucleon dynamics has the form:

E(ρ,∇ρ) = ρĒ(kf ) + (∇ρ)2F∇(kf ) + · · · . (42)

The coefficients have been compared with the corresponding phenomenological parameters of
various Skyrme type energy density functionals. In particular, the gradient term (∇ρ)2F∇(kf )

plays an important role in shaping the nuclear surface [44]. While the applicability of the density-
matrix expansion is questionable at very low densities, an important result of Refs. [14,17] is that



Relativistic energy density functionals: 
The elementary building blocks are two-fermion terms of the general type:
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... isoscalar and isovector four-currents and scalar densities:
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                         is the nuclear ground state.|�0�
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⇒ effective Lagrangian:

Hartree correlations

�i(⇥) = ai + (bi + cix)e�dix (i � S, V, TV ) x = ⇥/⇥sat



… energy density functional DD-PC1⇒ is it “predictive” ? Agreement with experiment?   

… functional form of the density dependence   ⇒ is it “sloppy”? Large parameter  
                                                                      uncertainties when fit to data?
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parameter
as (fm2) �10.0462
bs (fm2) �9.1504
cs (fm2) �6.4273

ds 1.3724
av (fm2) 5.9195
bv (fm2) 8.8637

dv 0.6584
btv (fm2) 1.8360

dtv 0.6403
�s (fm4) �0.8149

x = ⇢/⇢sat



Can the parameters of such a density functional form be completely determined by  
a microscopic nuclear matter EoS? 

Symmetric nuclear matter EoS:  Akmal, Pandharipande & Ravenhall, Phys. Rev. C 58

TABLE I: Pseudo-data for infinite symmetric nuclear matter used to compute the cost function χ2

for the energy density functional defined by Eq. (2). The seven points correspond to the microscopic

EoS of Akmal, Pandharipande and Ravenhall [11]. The adopted error for the EoS points is 10%,

while for the Dirac mass MD it is 2%.

pseudo-observable

ϵ(0.04 fm−3) -6.48 MeV

ϵ(0.08 fm−3) -12.43 MeV

ϵ(0.12 fm−3) -15.43 MeV

ϵ(0.16 fm−3) -16.03 MeV

ϵ(0.20 fm−3) -14.99MeV

ϵ(0.24 fm−3) -12.88 MeV

ϵ(0.32 fm−3) -6.49 MeV

MD(0.152 fm−3) 0.58 m

corresponds to the point on the manifold that is nearest to the empirical data point. The

Hessian matrix M of second derivatives of χ2(p) at the best-fit point p0 is diagonalized by

means of an orthogonal transformation. The eigenvalues in decreasing order and the compo-

nents of the corresponding eigenvectors are shown in Fig. 1. Stiff directions in the parameter

space are characterized by large eigenvalues. This means that the cost function χ2 exhibits

a rapid increase along these directions and the particular linear combinations of bare pa-

rameters corresponding to the stiff eigenvectors are firmly determined by the pseudo-data.

Small eigenvalues, on the other hand, refer to sloppy directions in the parameter space, along

which χ2 exhibits little variation and the corresponding linear combinations of parameters

are characterised by large uncertainties and, therefore, irrelevant for the behaviour of the

functional. Note that the eigenvalues of the Hessian span ten orders of magnitude and this

spectrum suggests the existence of a lower-dimensional model [10]. To remove the irrelevant

parameters and construct a simpler functional of lower dimension we employ the Manifold

Boundary Approximation Method (MBAM) [8].

Model parameters define an F -dimensional Riemann manifold embedded in the N -

dimensional data space. The data space is characterized by Euclidian metric and the square
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Density dependence of the couplings:
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Least-squares fit to the pseudo-data:

…N data points and the model depends on F dimensionless parameters.  

…maximizing the log-likelihood corresponds to minimizing the cost function χ2(p): 

�2(p) =
NX

n=1

rn(p)
2 r

n

(p) =
O(mod)

n

(p)�O
n

�O
n

➟ the residuals:

➟ the best model: minimum of χ2 on the model  
manifold (manifold of predictions embedded in  
the data space) 

@�2(p)

@pµ

����
p=p0

= 0, 8 µ = 1, . . . , F

In the quadratic approximation of the cost function χ2 around the best-fit point: 

��2(p) = �2(p)� �2(p0) =
1

2
�pTM̂�p

�p = p� p0



The symmetric Hessian matrix of second derivatives:

Diagonalization ⇒

Soft direction ⟹ small eigenvalue λ, little deterioration in χ2.  The corresponding 
eigenvector ξ involves a particular linear combination of model parameters that is 
not constrained by the observables included in the fit.

Stiff direction ⟹ large eigenvalue λ, χ2 rapidly worsens away from minimum, the fit  
places a stringent constraint on this particular linear combination of parameters.

Mµ⌫ =
@2�2

@pµ@p⌫

����
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��2(p) =
1

2
�pT

�
ADAT
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2
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Least-squares fit of the  
EDF parameters to  
the APR microscopic  
EoS of symmetric nuclear  
matter. 

Eigenvectors and  
eigenvalues of  
the Hessian matrix  
ℳ of second  
derivatives of χ2(p) ➟

Sloppy models are characterised  
by an exponential distribution of  
eigenvalues of the Hessian matrix  
→ exponential sensitivity to  
parameter combinations! 

…empty and filled bars ⇒ the 
corresponding amplitudes 
contribute with opposite signs. 



Model parameters define an F-dimensional Riemann manifold embedded in the N-
dimensional data space (Euclidian metric for the data space): 

dr2 =
X

m

drm
2

The Jacobian matrix  that relates changes in the parameters p to changes in the residuals:

drm =
X

µ

@rm
@pµ

dpµ =
X

µ

Jmµdpµ

dr2 =
X

m

dr2m =
X

µ⌫

(JTJ)µ⌫dpµdp⌫ =
X

µ⌫

gµ⌫dpµdp⌫

The Euclidean metric of data space induces a metric on the model manifold g = JT J.

Close to the best-fit point the Hessian matrix can be approximated by the metric tensor:
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X

m
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Model manifolds of nonlinear sloppy models have boundaries that can be analysed using 
geodesics. The geodesic curve in parameter space corresponds to a curve on the model 
manifold. The arc length of geodesics on the manifold are a measure of the manifold width 
in each direction.

The parameters corresponding to a geodesic path can be found as the solution of the 
differential equation: 

p̈µ +
X

↵�

�µ
↵� ṗ↵ṗ� = 0

with the connection coefficients: �↵
µ⌫ =

X

�

(g�1)↵�
X

m

@rm
@p�

@2rm
@pµ@p⌫

The boundary of the manifold is identified by the metric tensor becoming singular. 

➔ initial value problem in  
the parameter space.



Widths of the model manifold of the EDF  in the directions of the eigenvectors of  the 
Hessian matrix at p0, compared to the square-roots of the corresponding eigenvalues. 

The widths of sloppy model manifolds are exponentially distributed ➔ hyperribbon. 



The characteristic eigenvalue spectrum of the Hessian and the hierarchy of widths of the  
model manifold suggest a lower effective dimensionality of the model. 

How can a simpler effective model of lower dimension be constructed from a sloppy 
representation of the system?  



Manifold Boundary Approximation Method 

1. Given a model and a set of parameters, determine the best-fit model, 
calculate the Hessian and identify the eigendirection with smallest 
eigenvalue.   

2. Integrate the geodesic equation using the best-fit parameter values and 
the eigendirection with smallest eigenvalue as initial conditions, until the 
boundary of the model manifold is reached.  

3. Evaluate the limit associated with this boundary to produce a new model 
with one less parameters.  

4. Optimise the new model by a least-square fit to the data, and use it as a 
starting point for the next iteration.

Transtrum et al., PRL 104, 060201 (2010)
     PRL 113, 098701 (2014)

J. Chem. Phys. 143, 010901 (2015)
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Evolution of the seven parameters of the isoscalar part 
of the functional defined as functions of the affine 
parametrisation, along the geodesic path determined 
by the eigenvector of the Hessian matrix that 
corresponds to the smallest eigenvalue.

The initial (best-fit point) and final (at the boundary of the model 
manifold) eigenspectrum of the FIM, and the initial and final 
eigenvectors that correspond to the smallest eigenvalues.



The initial (best-fit point) and final (at the boundary of the model manifold) density-dependent isoscalar 
coupling functions, and the corresponding initial and final EoS curves. 



Second iteration:

The parameters are refitted  
to data!
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↵v(⇢) ⇡ av + bv(1� dvx)

= av + bv � bvdvx = ãv + b̃vx
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Third iteration:
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The parameters are refitted  
to data!

Eigenvectors and  
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the Hessian matrix  
ℳ  at the best-fit point ➟
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Fourth iteration:

↵s(⇢v) = ãs + b̃sx

↵v(⇢v) = ãv + b̃vx

The parameters are refitted  
to data!

Eigenvectors and  
eigenvalues of  
the Hessian matrix  
ℳ  at the best-fit point ➟



etc. ⇒ Walecka model, but not  
possible to get any agreement  
with experimental binding energies 
of finite nuclei!

↵s(⇢v) = ãs + b̃sx

↵v(⇢v) = ãv + b̃vx



Nuclear energy density functionals are sloppy: complex models that can be adjusted  
to data but are only sensitive to a few stiff parameter combinations, while displaying  
an exponential decrease of sensitivity to variations of soft parameter combinations. 

A sloppy multi-parameter model can still be used to make predictions, but its sloppiness 
really points to an underlying model of lower effective dimension associated with the 
stiff parameters. 

The exponential distribution of model manifold widths in the directions of the eigen-
vectors of the Hessian is nearly identical to the distribution of the square roots of the 
corresponding eigenvalues (sensitivity). 

The Manifold Boundary Approximation Method (MBAM)  can be used to  remove the 
irrelevant parameters and construct a simpler, non-sloppy functional of lower 
dimension.


