Nonperturbative Renormalization in Schrödinger Functional Scheme

Yusuke Taniguchi for PACS-CS collaboration

 Position of renormalization works

 Complement of the main project

 •⊱Nf=2+1 QCD at physical quark mass (2008-2010)

- Strong coupling α s for Nf=3 QCD
- Quark mass renormalization factor for Nf=3 QCD
- .⊱A challenge to larger volume L~9fm (2011-)
 ★ use of APE stout smeared link for Dirac operator
 - Clover term coefficient c_{SW}

Plan of the talk

- I. Introduction
 - 2. Strong coupling α s for Nf=3 QCD
 - 3. Quark mass renormalization factor
 - 4. Clover term coefficient
 - 5. Conclusion

Strong coupling αs for Nf=3 QCD • Goal of Schrödinger functional scheme Renormalize on the lattice and convert it to the MS scheme or renormalization group invariant (RGI) quantity An Example: Λ_{QCD} can be evaluated precisely by perturbation theory renormalized coupling $\bar{g}(\mu)$ renormalization scale μ are given precisely if for small $\overline{g}(\mu)$ $\Lambda_{\rm QCD} = \mu (b_0 \overline{g})^{-\frac{b_1}{2b_0^2}} \exp\left(-\frac{1}{2b_0 \overline{g}}\right) \exp\left(-\int_0^{\overline{g}} dg \left(\frac{1}{\beta(g)} + \frac{1}{b_0 g^3} - \frac{b_1}{b_0^2 g}\right)\right)$

Strong coupling αs for Nf=3 Q Goal of Schrödinger functional scheme Renormalize on the lattice and convert it to the MS scheme or renormalization group invariant (RGI) quantity An Example: Λ_{QCD} can be evaluated precisely by perturbation theory renormalized coupling $\overline{g}(\mu)$ are given precisely if renormalization scale µ for small $\overline{g}(\mu)$ μ tends to be low energy on lattice use of SF scheme $\overline{g}(\mu)$ tends to be strong

Strong coupling αs for Nf=3 QC Key quantity: Step scaling function (SSF) (Luescher et al) Discrete renormalization group flow: $\mu \rightarrow 2 \mu$ $---- \overline{g}(2\mu)$ $\overline{g}(\mu) \checkmark$

10

energy scale (GeV)

100

- Can reach at any high energy scale
- Not a speciality of SF scheme
- Well suited for SF scheme Unique renormalization scale Box size $\mu = 1/L$

Strong coupling αs for Nf=3 QC Key quantity: Step scaling function (SSF) (Luescher et al) Discrete renormalization group flow: $L \rightarrow 2L$ $\overline{q}(L)$ $\longrightarrow \overline{g}(2L)$

• Can reach at any high energy scale

• Not a speciality of SF scheme

• Well suited for SF scheme Unique renormalization scale Box size $\mu = 1/L$

SSF in the continuum limit

Strong coupling as for Nf=3 QCD

Step scaling function (SSF)

★ Iwasaki gauge action
 ★ Nonperturbatively improved Wilson fermion
 • three massless quarks

★Consistency between three continuum extrapolations

- Constant extrapolation with two/three data
 - Linear extrapolation

Step scaling function (SSF)

★ Iwasaki gauge action
 ★ Nonperturbatively improved Wilson fermion

• three massless quarks

Strong coupling αs for Nf=3 QCD Step scaling function (SSF)

Perturbative improvement of the SSF
One loop PT is not enough

Strong coupling αs for Nf=3 QC $\alpha_S(M_Z)$ and $\Lambda_{\overline{\mathrm{MS}}}$ Box size in physical unit $L_{max} = aN_{max}$ typically 4-6 $\overline{g}(L_{\text{max}})$ $\beta = 1.90 \ a = 0.08995(40) \ \text{fm}$ perform step scaling n times $\overline{g}(L_{\max}/2^n)$ and renormalization scale $L_{\max}/2^n$ are precisely determined For $n \sim 10$ perturbation theory is applicable

 $\alpha_s(M_Z) = 0.12047(81)(48)(-173)$

 $\Lambda_{\overline{MS}} = 239(10)(6)(-22)MeV$

Plan of the talk

I. Introduction

- \checkmark 2. Strong coupling α s for Nf=3 QCD
 - 3. Quark mass renormalization factor
 - 4. Clover term coefficient
 - 5. Conclusion

Quark mass renormalization factor

Goal: RGI mass

mass

renormalized

if evaluated at large μ **RGI mass M** can be given perturbatively

SSF works well $\overline{m}(L) \leftarrow$ $\rightarrow \overline{m}(2L)$ $\overline{m}(L_{\max}/2^n)$ Applying iteratively $\overline{m}(L_{\max})$

Quark mass renormalization factor Quark mass step scaling function (Luescher et al) $\Sigma_P(u, a/L) = \frac{Z_P(g_0, 2L)}{Z_P(g_0, L)}\Big|_{\overline{g}^2(L)=u, m=0}$

SSF on lattice

★Consistency between three continuum extrapolations

- Constant extrapolation with two/three data
- Linear extrapolation

Quark mass renormalization factor Quark mass step scaling function (Luescher et al) $\Sigma_P(u, a/L) = \left. \frac{Z_P(g_0, 2L)}{Z_P(g_0, L)} \right|_{\overline{g}^2(L)=u, m=0}$

Quark mass renormalization factor

Renormalization factor of axial vector current

Quark mass renormalization factor

Non-perturbative running mass for Nf=3 QCD

 $m_{ud}^{\overline{\text{MS}}}(2 \text{ GeV}) = 2.78(27) \text{MeV}$ $m_s^{\overline{\text{MS}}} = 86.7(2.3) \text{MeV}$

Plan of the talk

I. Introduction

- \checkmark 2. Strong coupling α s for Nf=3 QCD
- 3. Quark mass renormalization factor
 - 4. Clover term coefficient
 - 5. Conclusion

Evaluation of CSW by SF(Alpha) Fix cSW in order that O(a) effect vanish

Two different Dirichlet BC's

Two improved current correlators

 $A^{(T)}_{\mu} + c_A \partial_{\mu} P^{(T)}$ $A^{(0)}_{\mu} + c_A \partial_{\mu} P^{(0)}$

Two PCAC masses $M = 0 \rightarrow \kappa_c$

O(a) indicator $\Delta M = 0 \rightarrow c_{SW}$ $\Delta M = M^{(0)} - M^{(T)}$ boundary + bulk O(a) effect $O(10^{-4})$ at tree level

Csw dependence of O(a) indicator

14年2月20日木曜日

Csw dependence of O(a) indicator

 ΔM

14年2月20日木曜日

Csw dependence of O(a) indicator

Clover term coefficient

14年2月20日木曜日

Clover term coefficient

Conclusion

\bigstar Strong coupling α s for Nf=3 QCD

- SF scheme works well.
- Need $a \rightarrow 0$ limit, but is not available.
- Smearing may reduce O(a) error.
 Quark mass renormalization factor
 - ZA has a large O(a) error.
 - Smearing may reduce O(a) error.
- ★Clover term coefficient
 - Csw~1.1

Conclusion

\bigstar Strong coupling α s for Nf=3 QCD

• SF scheme works well.

