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In fact, all particles with a colour (in the sense of QCD) cannot be observed alone
(i.e., freely) for the same reason. To be free, a particle must be black (no colour) or
white (i.e., a superposition of red + green + blue). Mesons are black. For instance, if
their quark is blue, then their antiquark is antiblue. We have blue + antiblue = black.
Baryons are white: their three quarks have three different colours. This is why the
interaction between two nucleons is zero at large distance (few femtometers). At short
distance, however, a nucleon feels the internal colour structure of the other nucleon
generating the effective strong nuclear interaction.

Figure 1.21 shows an example of interaction potential between two nucleons. The
educated reader will note the analogy with the Van der Waals force between atoms:
attraction at long distance and repulsion at short distance. In the case of the Van der
Waals interaction, atoms are globally neutral but when they get close enough the elec-
tron clouds repel, forming dipole moments leading to an attraction between the atoms
and eventually to the formation of a molecule. At very short distance, however, the
atomic nuclei repel each other. In the case of the strong interaction, we also observe
an attraction at ”long” distance (1-2 fm) and a hard-core repulsion at short distance
( 0.5 fm). Here, the hard-core potential is produced by the repulsion between quarks
with same colour. Modern QCD calculations are now able to reproduce the repulsion
between nucleons at short distances.
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Figure 1.21: Example of interaction potential between nucleons.

QCD calculations are much more complicated than QED. One reason is that, unlike
photons, gluons may interact with each other because they carry a colour. As a result,
the Feynman diagrams of Fig. 1.22 need to be considered. In addition, the strength
of the strong interaction, quantified by its coupling constant, is greater than one8 and
does not allow for the use of perturbative theories, which makes Feynman diagrams
useless. QCD calculations need to be carried on high-performance computers. Such
calculations are called ”lattice QCD”.

As shown by lattice QCD calculations of Prof. Derek Leinweber from the Uni-
versity of Adelaide (see Figs. 1.23 and 1.24), the ”vacuum” is in fact a very complex
medium where gluons and pairs of quark-antiquark are continuously created and anni-
hilated due to quantum fluctuations. Similar calculations also show that a nucleon is

8In fact, it depends on the relative momentum between the particles.
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energy density t(r) (e.g., via the Thomas-Fermi model) [6–
8, 51, 52]. This method would be valid if the effect of the Pauli
exclusion principle was only to rearrange the kinetic energy
term h̄2

2m t without impacting other terms of the functional. In
fact, the EDF also depends on t via the “t1,2” momentum de-
pendent terms of the Skyrme effective interaction and, then,
a variation of t(r) also affects the nuclear part of the poten-
tial [6, 51]. At the same time, we have also observed that in-
cluding the Pauli exclusion principle has a strong impact on
the spin-orbit energy. This is illustrated in Fig. 1(b) for the
40Ca+40Ca system. For this system, removing the spin-orbit
interaction has little impact on the FHF potential (not shown
in the figure), but strongly increases the repulsion between the
fragments in the DCFHF potential (thin dashed line). This
shows that the spin-orbit energy absorbs a large part of the
Pauli repulsion. Thus, the Pauli exclusion principle has a more
complicated effect than just increasing the kinetic energy den-
sity.

Coupled-channels calculations were performed with the
CCFULL code [37] using Woods-Saxon fits of the FHF and
DCFHF potentials (shown by dotted lines in Figs. 1(a-c)
for the DCFHF potentials). By default, the incoming wave
boundary condition (IWBC) is used. For shallow pocket po-
tentials, however, the IWBC should be replaced by an imag-
inary potential inside the barrier to avoid numerical insta-
bilities. This is done for calculations with the 16O+208Pb
DCFHF potential using a modified version of CCFULL. Cou-
plings to the low-lying collective 2+ (in calcium isotopes) and
3� states are included with standard values of the coupling
constants [38, 53]. One (two) vibrational mode(s) can be in-
cluded in the projectile (target). For the 2+ states, we then use
the fact that, for symmetric systems, the mutual excitation of
one-phonon states in both nuclei can be approximated by one
phonon with a coupling constant scaled by

p
2 [54].

Fusion cross sections are plotted in Figs. 1(d-f) and (g-
i) in logarithmic and linear scales, respectively, for an en-
ergy range of ±15% around V DCFHF

B . Calculations with the
FHF potential systematically overestimate the data while the
DCFHF potential leads to a much better agreement with ex-
periment at all energies, and ranging over eight orders of mag-
nitude in cross-sections. This shows the importance of taking
into account Pauli repulsion in the bare potential for fusion
calculations. We emphasize that these calculations are per-
formed without adjustable parameters. However, the CC cal-
culations are kept simple and include only the most relevant
couplings. Improvements could be obtained, e.g., by includ-
ing anharmonicity of the multi-phonon states [55]. Interest-
ingly, the agreement between theory and data remains good
at deep sub-barrier energies once Pauli repulsion is included.
Thus, the Pauli exclusion principle provides a plausible expla-
nation for the long-standing deep sub-barrier fusion hindrance
problem [12–15].
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FIG. 5. The same as Fig. 4 for increased surface
diffuseness, a = 0.5 fm.

&, for two pieces of nuclear matter of equal den-
sities overlapping completely in ordinary space,
as a function of their relative momentum ~„. One
observes that the expected window of a minimum
in the interaction does occur for densities not too
far away from saturation (kF = 1.4 fm ') around
K„=2 fm '.
Figure 3 shows the kinetic and potential terms

of Eq. (2). One sees that the Pauli principle re-
laxes faster than the increase of repulsion in the
interaction. This is the physical origin of the
minimum in &, shown in Fig. 2.
Figures 4-6 show some results for ion-ion po-

tentials calculated according to Eq. (1). In these
calculations the densities are of the Saxon-Woods
form. The radii of the nuclei are chosen reali. sti-

FIG. 6. The same as Fig. 4 for the system argon
plus antimony.

cally but the central density is the saturating
value for the Reid potential. Consequently the
total nucleon number is larger than that of the
real systems. Figures 4 and 5 show the influence
of changing the surface diff usene ss and it i s pro-
nounced for light systems such as "O. Figure
6 gives the potential for a heavy-ion system.
We point out that the "pocket" increases with
increasing momentum, and that the potential is
attractive down to very small separation distances
at the "window momentum" E„=2 fm '. The po-
tentials for &„&2 fm ' have not been calculated,
but one can conclude from Fig. 2 that, for these
momenta, the depth of the potential will decrease
and eventually there will be repulsion.
Brink and Stancu" calculated a momentum-de-

pendent "0-"0potential using a Skyrme-interac-
tion (SII) and found the most attractive potential
at about 9 MeV/A while our results give us the
higher value of about 20.7 MeV/A (c.m. energies).
This difference is due to the unrelaistic, quadrat-
ic, momentum dependence for the Skyrme force.
The potentials shown cannot be used directly in
a scattering calculation since, because of the
momentum dependence, such a calculation has to
be done self-consistently (presumably possible
in a semiclassical local approximation). For
quantitatively reliable results, the G-matrix
equation, Eq. (4), has to be solved in a better ap-
proximation. We believe, however, that the gen-
eral conclusion of a momentum (or energy) win-
dow at which heavy ions can easily interpene-
trate remains valid.
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Fig.19.(Top)Densityevolutionforthereaction16O+208Pb
correspondingtoahead-oncollisionatacenter-of-massen-
ergyEc.m.=74.44MeV(justbelowthefusionbarrier).The
redsurfacescorrespondtoaniso-densityathalfthesaturation
density(ρ0/2=0.08fm−3).Eachfigureisseparatedbyatime
stepof135fm/c.Timerunsfromlefttoright.(Bottom)The
sameatEc.m.=74.45MeV,i.e.,justabovethefusionthresh-
old.
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Fig.20.Bassbarriers[210](stars)andbarriersextractedfrom
TDHFcalculations(circles)asafunctionofexperimentalbar-
riers(centroidsoffusionbarrierdistributions).

oftherelativemotiontoatransfermechanism[76].In
fact,theoutgoingchannelof16O+208PbatEc.m.=
74.44MeV(seetopoffig.19)is,inaverage,14C+210Po.
Thistwo-protontransferchanneleffectivelylowersthe
barrierbydecreasingZ1Z2and,then,theCoulombre-
pulsion.Transferreactionsinthe16O+208Pbsystemare
discussedinmoredetailsinsect.4.3.Notethatlow-lying
collectivevibrations,suchasthefirst3−statein208Pb
(seefig.4)alsoaffectthefusionbarrierdistribution[207].

Systematiccalculationsoffusionbarriershavebeen
performedformedium-masssystemsinvolvingspherical
nuclei[76].Asummaryoftheresultsisshowninfig.20.
Agoodreproductionofthebarrierdistributioncentroids
hasbeenobtained(betterthantheBassparametrisation)
forallthestudiedsystems.Othercalculationswith3-
dimensionalTDHFcodesconfirmedthepredictivepower
oftheTDHFapproachforthedeterminationoffusion
barriers[78,209].

Above-barrierfusioncross-sectionshavebeencom-
putedforthe16O+208Pbsysteminref.[76].Thefact
thatfusionprobabilitiesareeither0or1impliesthat
cross-sectionsareobtainedusingthe“quantumsharpcut-
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Fig.21.Experimentalfusioncross-sectionsfromref.[207]
(stars)comparedtocross-sectionsdeducedfromTDHFcal-
culations(lines)of16O+208Pbcollisions.Thetwolinescor-
respond,respectively,tolowerandupperlimitsoftheoretical
cross-sections.

offformula”[211],

σfus(E)=
πh̄2

2µE
[lmax(E)+1]2,(4.3)

wherethefusionprobabilityis0forl>lmax(E)and1
forl≤lmax(E).Toavoiddiscontinuitiesduetothein-
tegervaluesoflmax(E),[lmax(E)+1]̄hisgenerallyap-
proximatedbyitssemi-classicalequivalentLc=

√
2µEbc.

Thelattercorrespondstotheclassicalangularmomentum
thresholdforfusionandbcdenotesthemaximumimpact
parameterbelowwhichfusiontakesplace[212].Wefinally
obtainthestandardclassicalexpressionforfusioncross-
sectionsσfus(E)≃πL2

c/2µE=πb2
c.

Theresultsareshowninfig.21forthe16O+208Pb
system.Fusioncross-sectionsareoverestimatedbyabout
16%abovethebarrier.Althoughthisdiscrepancyissmall
foratheorywhichhasnoparameteradjustedonreaction
mechanisms,itsoriginisunclear.

Finally,thecalculationsarenotabletoreproducethe
sub-barrierenergies.Thisisofcourseoneofthemain
drawbacksoftheTDHFapproach.Theinclusionofquan-
tumtunnellingofthemany-bodywavefunctionisclearly
oneofthebiggestchallengesinthemicroscopictreatment
oflow-energynuclearreactions.

4.2.2Fusionbarrierswithadeformednucleus

Wenowconsidercollisionsofasphericalnucleusonade-
formedone.Insuchacase,thebarrierdependsonthe
orientationofthedeformednucleusatthetouchingpoint,
leadingtoawiderbarrierdistributionthanthesinglebar-
riercase[187,215].

Figure22showstwoexamplesofexperimentalbar-
rierdistributionsinvolvingaprolatlydeformedheavytar-
get[213,214].Suchbarrierdistributionsareusuallywell
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Fig.19.(Top)Densityevolutionforthereaction16O+208Pb
correspondingtoahead-oncollisionatacenter-of-massen-
ergyEc.m.=74.44MeV(justbelowthefusionbarrier).The
redsurfacescorrespondtoaniso-densityathalfthesaturation
density(ρ0/2=0.08fm−3).Eachfigureisseparatedbyatime
stepof135fm/c.Timerunsfromlefttoright.(Bottom)The
sameatEc.m.=74.45MeV,i.e.,justabovethefusionthresh-
old.
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Fig.19.(Top)Densityevolutionforthereaction16O+208Pb
correspondingtoahead-oncollisionatacenter-of-massen-
ergyEc.m.=74.44MeV(justbelowthefusionbarrier).The
redsurfacescorrespondtoaniso-densityathalfthesaturation
density(ρ0/2=0.08fm−3).Eachfigureisseparatedbyatime
stepof135fm/c.Timerunsfromlefttoright.(Bottom)The
sameatEc.m.=74.45MeV,i.e.,justabovethefusionthresh-
old.
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Fig.19.(Top)Densityevolutionforthereaction16O+208Pb
correspondingtoahead-oncollisionatacenter-of-massen-
ergyEc.m.=74.44MeV(justbelowthefusionbarrier).The
redsurfacescorrespondtoaniso-densityathalfthesaturation
density(ρ0/2=0.08fm−3).Eachfigureisseparatedbyatime
stepof135fm/c.Timerunsfromlefttoright.(Bottom)The
sameatEc.m.=74.45MeV,i.e.,justabovethefusionthresh-
old.

5060708090100

VB
exp

 (MeV)

50

60

70

80

90

100

V
B

th
 (
M
eV
)

Bass (1977)
TDHF

Fig.20.Bassbarriers[210](stars)andbarriersextractedfrom
TDHFcalculations(circles)asafunctionofexperimentalbar-
riers(centroidsoffusionbarrierdistributions).

oftherelativemotiontoatransfermechanism[76].In
fact,theoutgoingchannelof16O+208PbatEc.m.=
74.44MeV(seetopoffig.19)is,inaverage,14C+210Po.
Thistwo-protontransferchanneleffectivelylowersthe
barrierbydecreasingZ1Z2and,then,theCoulombre-
pulsion.Transferreactionsinthe16O+208Pbsystemare
discussedinmoredetailsinsect.4.3.Notethatlow-lying
collectivevibrations,suchasthefirst3−statein208Pb
(seefig.4)alsoaffectthefusionbarrierdistribution[207].

Systematiccalculationsoffusionbarriershavebeen
performedformedium-masssystemsinvolvingspherical
nuclei[76].Asummaryoftheresultsisshowninfig.20.
Agoodreproductionofthebarrierdistributioncentroids
hasbeenobtained(betterthantheBassparametrisation)
forallthestudiedsystems.Othercalculationswith3-
dimensionalTDHFcodesconfirmedthepredictivepower
oftheTDHFapproachforthedeterminationoffusion
barriers[78,209].

Above-barrierfusioncross-sectionshavebeencom-
putedforthe16O+208Pbsysteminref.[76].Thefact
thatfusionprobabilitiesareeither0or1impliesthat
cross-sectionsareobtainedusingthe“quantumsharpcut-
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Fig.21.Experimentalfusioncross-sectionsfromref.[207]
(stars)comparedtocross-sectionsdeducedfromTDHFcal-
culations(lines)of16O+208Pbcollisions.Thetwolinescor-
respond,respectively,tolowerandupperlimitsoftheoretical
cross-sections.

offformula”[211],

σfus(E)=
πh̄2

2µE
[lmax(E)+1]2,(4.3)

wherethefusionprobabilityis0forl>lmax(E)and1
forl≤lmax(E).Toavoiddiscontinuitiesduetothein-
tegervaluesoflmax(E),[lmax(E)+1]̄hisgenerallyap-
proximatedbyitssemi-classicalequivalentLc=

√
2µEbc.

Thelattercorrespondstotheclassicalangularmomentum
thresholdforfusionandbcdenotesthemaximumimpact
parameterbelowwhichfusiontakesplace[212].Wefinally
obtainthestandardclassicalexpressionforfusioncross-
sectionsσfus(E)≃πL2

c/2µE=πb2
c.

Theresultsareshowninfig.21forthe16O+208Pb
system.Fusioncross-sectionsareoverestimatedbyabout
16%abovethebarrier.Althoughthisdiscrepancyissmall
foratheorywhichhasnoparameteradjustedonreaction
mechanisms,itsoriginisunclear.

Finally,thecalculationsarenotabletoreproducethe
sub-barrierenergies.Thisisofcourseoneofthemain
drawbacksoftheTDHFapproach.Theinclusionofquan-
tumtunnellingofthemany-bodywavefunctionisclearly
oneofthebiggestchallengesinthemicroscopictreatment
oflow-energynuclearreactions.

4.2.2Fusionbarrierswithadeformednucleus

Wenowconsidercollisionsofasphericalnucleusonade-
formedone.Insuchacase,thebarrierdependsonthe
orientationofthedeformednucleusatthetouchingpoint,
leadingtoawiderbarrierdistributionthanthesinglebar-
riercase[187,215].

Figure22showstwoexamplesofexperimentalbar-
rierdistributionsinvolvingaprolatlydeformedheavytar-
get[213,214].Suchbarrierdistributionsareusuallywell
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Fig.19.(Top)Densityevolutionforthereaction16O+208Pb
correspondingtoahead-oncollisionatacenter-of-massen-
ergyEc.m.=74.44MeV(justbelowthefusionbarrier).The
redsurfacescorrespondtoaniso-densityathalfthesaturation
density(ρ0/2=0.08fm−3).Eachfigureisseparatedbyatime
stepof135fm/c.Timerunsfromlefttoright.(Bottom)The
sameatEc.m.=74.45MeV,i.e.,justabovethefusionthresh-
old.
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Fig.20.Bassbarriers[210](stars)andbarriersextractedfrom
TDHFcalculations(circles)asafunctionofexperimentalbar-
riers(centroidsoffusionbarrierdistributions).

oftherelativemotiontoatransfermechanism[76].In
fact,theoutgoingchannelof16O+208PbatEc.m.=
74.44MeV(seetopoffig.19)is,inaverage,14C+210Po.
Thistwo-protontransferchanneleffectivelylowersthe
barrierbydecreasingZ1Z2and,then,theCoulombre-
pulsion.Transferreactionsinthe16O+208Pbsystemare
discussedinmoredetailsinsect.4.3.Notethatlow-lying
collectivevibrations,suchasthefirst3−statein208Pb
(seefig.4)alsoaffectthefusionbarrierdistribution[207].

Systematiccalculationsoffusionbarriershavebeen
performedformedium-masssystemsinvolvingspherical
nuclei[76].Asummaryoftheresultsisshowninfig.20.
Agoodreproductionofthebarrierdistributioncentroids
hasbeenobtained(betterthantheBassparametrisation)
forallthestudiedsystems.Othercalculationswith3-
dimensionalTDHFcodesconfirmedthepredictivepower
oftheTDHFapproachforthedeterminationoffusion
barriers[78,209].

Above-barrierfusioncross-sectionshavebeencom-
putedforthe16O+208Pbsysteminref.[76].Thefact
thatfusionprobabilitiesareeither0or1impliesthat
cross-sectionsareobtainedusingthe“quantumsharpcut-

80100
ECM (MeV)

0.1

1

10

100

1000

Vfu
s  (
m
b)

experiment
TDHF

Fig.21.Experimentalfusioncross-sectionsfromref.[207]
(stars)comparedtocross-sectionsdeducedfromTDHFcal-
culations(lines)of16O+208Pbcollisions.Thetwolinescor-
respond,respectively,tolowerandupperlimitsoftheoretical
cross-sections.

offformula”[211],

σfus(E)=
πh̄2

2µE
[lmax(E)+1]2,(4.3)

wherethefusionprobabilityis0forl>lmax(E)and1
forl≤lmax(E).Toavoiddiscontinuitiesduetothein-
tegervaluesoflmax(E),[lmax(E)+1]̄hisgenerallyap-
proximatedbyitssemi-classicalequivalentLc=

√
2µEbc.

Thelattercorrespondstotheclassicalangularmomentum
thresholdforfusionandbcdenotesthemaximumimpact
parameterbelowwhichfusiontakesplace[212].Wefinally
obtainthestandardclassicalexpressionforfusioncross-
sectionsσfus(E)≃πL2

c/2µE=πb2
c.

Theresultsareshowninfig.21forthe16O+208Pb
system.Fusioncross-sectionsareoverestimatedbyabout
16%abovethebarrier.Althoughthisdiscrepancyissmall
foratheorywhichhasnoparameteradjustedonreaction
mechanisms,itsoriginisunclear.

Finally,thecalculationsarenotabletoreproducethe
sub-barrierenergies.Thisisofcourseoneofthemain
drawbacksoftheTDHFapproach.Theinclusionofquan-
tumtunnellingofthemany-bodywavefunctionisclearly
oneofthebiggestchallengesinthemicroscopictreatment
oflow-energynuclearreactions.

4.2.2Fusionbarrierswithadeformednucleus

Wenowconsidercollisionsofasphericalnucleusonade-
formedone.Insuchacase,thebarrierdependsonthe
orientationofthedeformednucleusatthetouchingpoint,
leadingtoawiderbarrierdistributionthanthesinglebar-
riercase[187,215].

Figure22showstwoexamplesofexperimentalbar-
rierdistributionsinvolvingaprolatlydeformedheavytar-
get[213,214].Suchbarrierdistributionsareusuallywell
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� h�| Ĥ |�i = 0

⇢(r)

� h�|

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Fig.19.(Top)Densityevolutionforthereaction16O+208Pb
correspondingtoahead-oncollisionatacenter-of-massen-
ergyEc.m.=74.44MeV(justbelowthefusionbarrier).The
redsurfacescorrespondtoaniso-densityathalfthesaturation
density(ρ0/2=0.08fm−3).Eachfigureisseparatedbyatime
stepof135fm/c.Timerunsfromlefttoright.(Bottom)The
sameatEc.m.=74.45MeV,i.e.,justabovethefusionthresh-
old.
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Fig.20.Bassbarriers[210](stars)andbarriersextractedfrom
TDHFcalculations(circles)asafunctionofexperimentalbar-
riers(centroidsoffusionbarrierdistributions).

oftherelativemotiontoatransfermechanism[76].In
fact,theoutgoingchannelof16O+208PbatEc.m.=
74.44MeV(seetopoffig.19)is,inaverage,14C+210Po.
Thistwo-protontransferchanneleffectivelylowersthe
barrierbydecreasingZ1Z2and,then,theCoulombre-
pulsion.Transferreactionsinthe16O+208Pbsystemare
discussedinmoredetailsinsect.4.3.Notethatlow-lying
collectivevibrations,suchasthefirst3−statein208Pb
(seefig.4)alsoaffectthefusionbarrierdistribution[207].

Systematiccalculationsoffusionbarriershavebeen
performedformedium-masssystemsinvolvingspherical
nuclei[76].Asummaryoftheresultsisshowninfig.20.
Agoodreproductionofthebarrierdistributioncentroids
hasbeenobtained(betterthantheBassparametrisation)
forallthestudiedsystems.Othercalculationswith3-
dimensionalTDHFcodesconfirmedthepredictivepower
oftheTDHFapproachforthedeterminationoffusion
barriers[78,209].

Above-barrierfusioncross-sectionshavebeencom-
putedforthe16O+208Pbsysteminref.[76].Thefact
thatfusionprobabilitiesareeither0or1impliesthat
cross-sectionsareobtainedusingthe“quantumsharpcut-
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Fig.21.Experimentalfusioncross-sectionsfromref.[207]
(stars)comparedtocross-sectionsdeducedfromTDHFcal-
culations(lines)of16O+208Pbcollisions.Thetwolinescor-
respond,respectively,tolowerandupperlimitsoftheoretical
cross-sections.

offformula”[211],

σfus(E)=
πh̄2

2µE
[lmax(E)+1]2,(4.3)

wherethefusionprobabilityis0forl>lmax(E)and1
forl≤lmax(E).Toavoiddiscontinuitiesduetothein-
tegervaluesoflmax(E),[lmax(E)+1]̄hisgenerallyap-
proximatedbyitssemi-classicalequivalentLc=

√
2µEbc.

Thelattercorrespondstotheclassicalangularmomentum
thresholdforfusionandbcdenotesthemaximumimpact
parameterbelowwhichfusiontakesplace[212].Wefinally
obtainthestandardclassicalexpressionforfusioncross-
sectionsσfus(E)≃πL2

c/2µE=πb2
c.

Theresultsareshowninfig.21forthe16O+208Pb
system.Fusioncross-sectionsareoverestimatedbyabout
16%abovethebarrier.Althoughthisdiscrepancyissmall
foratheorywhichhasnoparameteradjustedonreaction
mechanisms,itsoriginisunclear.

Finally,thecalculationsarenotabletoreproducethe
sub-barrierenergies.Thisisofcourseoneofthemain
drawbacksoftheTDHFapproach.Theinclusionofquan-
tumtunnellingofthemany-bodywavefunctionisclearly
oneofthebiggestchallengesinthemicroscopictreatment
oflow-energynuclearreactions.

4.2.2Fusionbarrierswithadeformednucleus

Wenowconsidercollisionsofasphericalnucleusonade-
formedone.Insuchacase,thebarrierdependsonthe
orientationofthedeformednucleusatthetouchingpoint,
leadingtoawiderbarrierdistributionthanthesinglebar-
riercase[187,215].

Figure22showstwoexamplesofexperimentalbar-
rierdistributionsinvolvingaprolatlydeformedheavytar-
get[213,214].Suchbarrierdistributionsareusuallywell
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Deep Sub-Barrier Fusion Hindrance 
Other hindrance mechanisms 

-  Incompressibility (Misicu & Esbensen, PRL2006) 

-  Adiabaticity (Ichikawa et al., PRL 2009) 

-  Decoherence (Dasgupta et al., PRL 2007) 

-  Dissipation (Evers et al., PRC 2011) 

-  Vibration damping (Ichikawa et al., PRC 2015) 

-  … 

=> Need for dynamical description 
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Fig.19.(Top)Densityevolutionforthereaction16O+208Pb
correspondingtoahead-oncollisionatacenter-of-massen-
ergyEc.m.=74.44MeV(justbelowthefusionbarrier).The
redsurfacescorrespondtoaniso-densityathalfthesaturation
density(ρ0/2=0.08fm−3).Eachfigureisseparatedbyatime
stepof135fm/c.Timerunsfromlefttoright.(Bottom)The
sameatEc.m.=74.45MeV,i.e.,justabovethefusionthresh-
old.
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Fig.20.Bassbarriers[210](stars)andbarriersextractedfrom
TDHFcalculations(circles)asafunctionofexperimentalbar-
riers(centroidsoffusionbarrierdistributions).

oftherelativemotiontoatransfermechanism[76].In
fact,theoutgoingchannelof16O+208PbatEc.m.=
74.44MeV(seetopoffig.19)is,inaverage,14C+210Po.
Thistwo-protontransferchanneleffectivelylowersthe
barrierbydecreasingZ1Z2and,then,theCoulombre-
pulsion.Transferreactionsinthe16O+208Pbsystemare
discussedinmoredetailsinsect.4.3.Notethatlow-lying
collectivevibrations,suchasthefirst3−statein208Pb
(seefig.4)alsoaffectthefusionbarrierdistribution[207].

Systematiccalculationsoffusionbarriershavebeen
performedformedium-masssystemsinvolvingspherical
nuclei[76].Asummaryoftheresultsisshowninfig.20.
Agoodreproductionofthebarrierdistributioncentroids
hasbeenobtained(betterthantheBassparametrisation)
forallthestudiedsystems.Othercalculationswith3-
dimensionalTDHFcodesconfirmedthepredictivepower
oftheTDHFapproachforthedeterminationoffusion
barriers[78,209].

Above-barrierfusioncross-sectionshavebeencom-
putedforthe16O+208Pbsysteminref.[76].Thefact
thatfusionprobabilitiesareeither0or1impliesthat
cross-sectionsareobtainedusingthe“quantumsharpcut-
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Fig.21.Experimentalfusioncross-sectionsfromref.[207]
(stars)comparedtocross-sectionsdeducedfromTDHFcal-
culations(lines)of16O+208Pbcollisions.Thetwolinescor-
respond,respectively,tolowerandupperlimitsoftheoretical
cross-sections.

offformula”[211],

σfus(E)=
πh̄2

2µE
[lmax(E)+1]2,(4.3)

wherethefusionprobabilityis0forl>lmax(E)and1
forl≤lmax(E).Toavoiddiscontinuitiesduetothein-
tegervaluesoflmax(E),[lmax(E)+1]̄hisgenerallyap-
proximatedbyitssemi-classicalequivalentLc=

√
2µEbc.

Thelattercorrespondstotheclassicalangularmomentum
thresholdforfusionandbcdenotesthemaximumimpact
parameterbelowwhichfusiontakesplace[212].Wefinally
obtainthestandardclassicalexpressionforfusioncross-
sectionsσfus(E)≃πL2

c/2µE=πb2
c.

Theresultsareshowninfig.21forthe16O+208Pb
system.Fusioncross-sectionsareoverestimatedbyabout
16%abovethebarrier.Althoughthisdiscrepancyissmall
foratheorywhichhasnoparameteradjustedonreaction
mechanisms,itsoriginisunclear.

Finally,thecalculationsarenotabletoreproducethe
sub-barrierenergies.Thisisofcourseoneofthemain
drawbacksoftheTDHFapproach.Theinclusionofquan-
tumtunnellingofthemany-bodywavefunctionisclearly
oneofthebiggestchallengesinthemicroscopictreatment
oflow-energynuclearreactions.

4.2.2Fusionbarrierswithadeformednucleus

Wenowconsidercollisionsofasphericalnucleusonade-
formedone.Insuchacase,thebarrierdependsonthe
orientationofthedeformednucleusatthetouchingpoint,
leadingtoawiderbarrierdistributionthanthesinglebar-
riercase[187,215].

Figure22showstwoexamplesofexperimentalbar-
rierdistributionsinvolvingaprolatlydeformedheavytar-
get[213,214].Suchbarrierdistributionsareusuallywell
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FIG. 2. (Color online) For the 16O+208Pb system; (a) Total and
isoscalar DC-TDHF potentials at Ec.m. = 75 MeV. The shaded re-
gion corresponds to the reduction originating from the isovector
contribution to the energy density. (b) Same as in (a) except for
Ec.m. = 90 MeV. (c) Same as in (a) except for Ec.m. = 120 MeV.

the isoscalar barrier is due to the isovector contribution. It is
evident that the isovector dynamics results in the narrowing
of the fusion barrier, thus resulting in an enhancement of the
sub-barrier fusion cross-sections. The insert in Fig. 1 shows
the isovector and isoscalar components without the Coulomb
contribution. We have also calculated fusion barriers for the
40Ca+40Ca and 48Ca+48Ca systems, where the isovector con-
tribution is zero as expected from symmetry.

As an example of a more asymmetric system we performed
calculations for the 16O+208Pb system at Ec.m. = 75 MeV. Re-
sults are shown in Fig. 2(a). Here we see a substantial en-
hancement of sub-barrier fusion due to the isovector dynam-
ics. For this system we have performed further calculations at
c.m. energies of 90 MeV and 120 MeV shown in Fig. 2(b-c).
As the beam energy increases, the relative contribution from
the isovector component to the total barrier decreases, while
the overall barrier height increases with increasing energy. At
TDHF energies much higher than the barrier height the total
barriers approaches the frozen density barrier [54,65] due to
the inability of the system to rearrange at that time-scale at
which time the isovector contribution vanishes as well. The
above results demonstrate the influence of isovector dynamics
on typical fusion barriers.

We next look at Ca+Sn reactions. The experimental ob-
servation of a sub-barrier fusion enhancement in the sys-
tem 40Ca+132Sn as compared to more neutron-rich sys-
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FIG. 3. (Color online) For (a) 40Ca+132Sn, (b) 48Ca+132Sn systems;
Total and isoscalar DC-TDHF potentials. In (a) the blue shaded
region corresponds to the reduction originating from the isovector
contribution. In (b) we see no isovector effect. The inserts show
the isoscalar and isovector contributions to the interaction barrier
without the Coulomb potential. The TDHF collision energy was
Ec.m. = 120 MeV.

tem 48Ca+132Sn was the subject of a previous DC-TDHF
study [66], where it was shown that the fusion barriers for the
two systems have essentially the same height but the fusion
barrier for the 48Ca+132Sn system was much wider than that
for the 40Ca+132Sn system. We see in Fig. 3(a) a strong reduc-
tion of the isoscalar barrier due to the isovector contribution.
This behavior is similar to that of the previous two systems
albeit the isovector reduction is somewhat larger as shown in
the insert of Fig. 3(a). We then performed the same calculation
for the 48Ca+132Sn system as shown in Fig. 3(b). The startling
result is the vanishing of the isovector contribution. With no
isovector reduction the fusion barrier for this system is much
wider than that for the 40Ca+132Sn system for which substan-
tial reduction occurs. The absence of the isovector component
for the 48Ca+132Sn system could be a reflection of the negative
Q�values for neutron pickup. This is the first direct observa-
tion of this phenomena in microscopic calculations. This may
also explain why for the 48Ca+132Sn system simply consid-
ering the 2+ and 3� excitations of the target and projectile
in coupled-channel calculations is able to reproduce the sub-
barrier fusion cross-sections, whereas doing the same for the
40Ca+132Sn system grossly under-predicts the cross-sections.
In Ref. [17], this was attributed to transfer which manifests
itself in the isovector dynamics.

In all the studied systems, we observe an isovector reduc-
tion in the presence of positive Q�values for transfer chan-
nels. This can be understood from the Cr

I r2
I term in Eq. (3)

which quantitatively dominates. When an isospin equilibra-
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the isoscalar barrier is due to the isovector contribution. It is
evident that the isovector dynamics results in the narrowing
of the fusion barrier, thus resulting in an enhancement of the
sub-barrier fusion cross-sections. The insert in Fig. 1 shows
the isovector and isoscalar components without the Coulomb
contribution. We have also calculated fusion barriers for the
40Ca+40Ca and 48Ca+48Ca systems, where the isovector con-
tribution is zero as expected from symmetry.

As an example of a more asymmetric system we performed
calculations for the 16O+208Pb system at Ec.m. = 75 MeV. Re-
sults are shown in Fig. 2(a). Here we see a substantial en-
hancement of sub-barrier fusion due to the isovector dynam-
ics. For this system we have performed further calculations at
c.m. energies of 90 MeV and 120 MeV shown in Fig. 2(b-c).
As the beam energy increases, the relative contribution from
the isovector component to the total barrier decreases, while
the overall barrier height increases with increasing energy. At
TDHF energies much higher than the barrier height the total
barriers approaches the frozen density barrier [54,65] due to
the inability of the system to rearrange at that time-scale at
which time the isovector contribution vanishes as well. The
above results demonstrate the influence of isovector dynamics
on typical fusion barriers.

We next look at Ca+Sn reactions. The experimental ob-
servation of a sub-barrier fusion enhancement in the sys-
tem 40Ca+132Sn as compared to more neutron-rich sys-
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FIG. 3. (Color online) For (a) 40Ca+132Sn, (b) 48Ca+132Sn systems;
Total and isoscalar DC-TDHF potentials. In (a) the blue shaded
region corresponds to the reduction originating from the isovector
contribution. In (b) we see no isovector effect. The inserts show
the isoscalar and isovector contributions to the interaction barrier
without the Coulomb potential. The TDHF collision energy was
Ec.m. = 120 MeV.

tem 48Ca+132Sn was the subject of a previous DC-TDHF
study [66], where it was shown that the fusion barriers for the
two systems have essentially the same height but the fusion
barrier for the 48Ca+132Sn system was much wider than that
for the 40Ca+132Sn system. We see in Fig. 3(a) a strong reduc-
tion of the isoscalar barrier due to the isovector contribution.
This behavior is similar to that of the previous two systems
albeit the isovector reduction is somewhat larger as shown in
the insert of Fig. 3(a). We then performed the same calculation
for the 48Ca+132Sn system as shown in Fig. 3(b). The startling
result is the vanishing of the isovector contribution. With no
isovector reduction the fusion barrier for this system is much
wider than that for the 40Ca+132Sn system for which substan-
tial reduction occurs. The absence of the isovector component
for the 48Ca+132Sn system could be a reflection of the negative
Q�values for neutron pickup. This is the first direct observa-
tion of this phenomena in microscopic calculations. This may
also explain why for the 48Ca+132Sn system simply consid-
ering the 2+ and 3� excitations of the target and projectile
in coupled-channel calculations is able to reproduce the sub-
barrier fusion cross-sections, whereas doing the same for the
40Ca+132Sn system grossly under-predicts the cross-sections.
In Ref. [17], this was attributed to transfer which manifests
itself in the isovector dynamics.

In all the studied systems, we observe an isovector reduc-
tion in the presence of positive Q�values for transfer chan-
nels. This can be understood from the Cr

I r2
I term in Eq. (3)

which quantitatively dominates. When an isospin equilibra-

2

as an integral of the energy density H (r) [52]

E =
Z

d3
rH (r) , (2)

which includes the kinetic, isoscalar, isovector, and Coulomb

terms [53]:

H (r) =
h̄2
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In particular,

HI(r) =Cr
I r2

I +Cs
I s

2
I +CDr

I rIDrI +CDs
I sI ·DsI +Ct

I
�
rItI � j

2
I
�
+CT

I

⇣
sI ·TI � J

$2
I

⌘
+C—J

I

⇣
rI— ·JI + sI · (—⇥ jI)

⌘
, (4)

where we have used the gauge invariant form suitable for
time-dependent calculations. The isospin index I = 0,1 for
isoscalar and isovector energy densities, respectively. The
most common choice of Skyrme EDF restricts the density de-
pendence of the coupling constants to the Cr

I and Cs
I terms

only. These density dependent coefficients contribute to the
coupling of isoscalar and isovector fields in the Hartree-Fock
Hamiltonian. The isoscalar (isovector) energy density, H0(r)
(H1(r)), depends on the isoscalar (isovector) particle density,
r0 = rn +rp (r1 = rn �rp), with analogous expressions for
other densities and currents. Values of the coupling coeffi-
cients as well as their relation to the alternative parametriza-
tions of the Skyrme EDF can be found in [53].
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FIG. 1. (Color online) For the 40Ca+48Ca system; Total and isoscalar
DC-TDHF potentials. The shaded region corresponds to the reduc-
tion originating from the isovector contribution to the energy density.
The insert shows the isoscalar and isovector contributions to the in-
teraction barrier without the Coulomb potential. The TDHF collision
energy was Ec.m. = 55 MeV.

The above form of the EDF is more suitable for study-
ing the isospin dependence of nuclear properties and have
been employed in nuclear structure studies [53]. In the same
spirit we can utilize this approach to study isospin depen-
dent effects in nuclear reactions microscopically. In particular,
the density-constrained time-dependent Hartree-Fock (DC-
TDHF) method [41] can be employed to study isospin effects

on fusion barriers and fusion cross-sections. The DC-TDHF
approach calculates the nucleus-nucleus potentials V (R) di-
rectly from TDHF dynamics and has been used to calculate
fusion cross-sections for a wide range of reactions [54–60].
The basic idea of this approach is the following: At certain
times t or, equivalently, at certain internuclear distances R(t),
a static energy minimization is performed while constraining
the proton and neutron densities to be equal to the instanta-
neous TDHF densities. We refer to the minimized energy as
the “density constrained energy” EDC(R). The ion-ion inter-
action potential V (R) is obtained by subtracting the constant
binding energies EA1 and EA2 of the two individual nuclei

V (R) = EDC(R)�EA1 �EA2 . (5)

The calculated ion-ion interaction barriers contain all of the
dynamical changes in the nuclear density during the TDHF
time-evolution in a self-consistent manner. As a consequence
of the dynamics the DC-TDHF potential is energy depen-
dent [54]. Using the decomposition of the Skyrme EDF into
isoscalar and isovector parts [Eq. (4)], we can re-write this po-
tential as

V (R) = Â
I=0,1

vI(R)+VC(R) , (6)

where vI(R) denotes the potential computed by using the
isoscalar and isovector parts of the Skyrme EDF given in
Eq. (3) in Eq. (5). The Coulomb potential is also calculated
via Eq. (5) using the Coulomb energy density.

We have used the DC-TDHF approach to study fusion bar-
riers for a number of systems. Calculations were done in a
three-dimensional Cartesian geometry with no symmetry as-
sumptions [61] and using the Skyrme SLy4 EDF [62]. The
three-dimensional Poisson equation for the Coulomb poten-
tial is solved by using Fast-Fourier Transform techniques and
the Slater approximation is used for the Coulomb exchange
term. The box size used for all the calculations was chosen to
be 60⇥30⇥30 fm3, with a mesh spacing of 1.0 fm in all di-
rections. These values provide very accurate results due to the
employment of sophisticated discretization techniques [63].

In Fig. 1 we show the total and isoscalar fusion barriers
(both including the Coulomb contribution) for the 40Ca+48Ca
system at Ec.m. = 55 MeV. For the Ca+Ca systems the energy
dependence is relatively weak [54,64,65]. The reduction of
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FIG. 2. (Color online) For the 16O+208Pb system; (a) Total and
isoscalar DC-TDHF potentials at Ec.m. = 75 MeV. The shaded re-
gion corresponds to the reduction originating from the isovector
contribution to the energy density. (b) Same as in (a) except for
Ec.m. = 90 MeV. (c) Same as in (a) except for Ec.m. = 120 MeV.

the isoscalar barrier is due to the isovector contribution. It is
evident that the isovector dynamics results in the narrowing
of the fusion barrier, thus resulting in an enhancement of the
sub-barrier fusion cross-sections. The insert in Fig. 1 shows
the isovector and isoscalar components without the Coulomb
contribution. We have also calculated fusion barriers for the
40Ca+40Ca and 48Ca+48Ca systems, where the isovector con-
tribution is zero as expected from symmetry.

As an example of a more asymmetric system we performed
calculations for the 16O+208Pb system at Ec.m. = 75 MeV. Re-
sults are shown in Fig. 2(a). Here we see a substantial en-
hancement of sub-barrier fusion due to the isovector dynam-
ics. For this system we have performed further calculations at
c.m. energies of 90 MeV and 120 MeV shown in Fig. 2(b-c).
As the beam energy increases, the relative contribution from
the isovector component to the total barrier decreases, while
the overall barrier height increases with increasing energy. At
TDHF energies much higher than the barrier height the total
barriers approaches the frozen density barrier [54,65] due to
the inability of the system to rearrange at that time-scale at
which time the isovector contribution vanishes as well. The
above results demonstrate the influence of isovector dynamics
on typical fusion barriers.

We next look at Ca+Sn reactions. The experimental ob-
servation of a sub-barrier fusion enhancement in the sys-
tem 40Ca+132Sn as compared to more neutron-rich sys-
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FIG. 3. (Color online) For (a) 40Ca+132Sn, (b) 48Ca+132Sn systems;
Total and isoscalar DC-TDHF potentials. In (a) the blue shaded
region corresponds to the reduction originating from the isovector
contribution. In (b) we see no isovector effect. The inserts show
the isoscalar and isovector contributions to the interaction barrier
without the Coulomb potential. The TDHF collision energy was
Ec.m. = 120 MeV.

tem 48Ca+132Sn was the subject of a previous DC-TDHF
study [66], where it was shown that the fusion barriers for the
two systems have essentially the same height but the fusion
barrier for the 48Ca+132Sn system was much wider than that
for the 40Ca+132Sn system. We see in Fig. 3(a) a strong reduc-
tion of the isoscalar barrier due to the isovector contribution.
This behavior is similar to that of the previous two systems
albeit the isovector reduction is somewhat larger as shown in
the insert of Fig. 3(a). We then performed the same calculation
for the 48Ca+132Sn system as shown in Fig. 3(b). The startling
result is the vanishing of the isovector contribution. With no
isovector reduction the fusion barrier for this system is much
wider than that for the 40Ca+132Sn system for which substan-
tial reduction occurs. The absence of the isovector component
for the 48Ca+132Sn system could be a reflection of the negative
Q�values for neutron pickup. This is the first direct observa-
tion of this phenomena in microscopic calculations. This may
also explain why for the 48Ca+132Sn system simply consid-
ering the 2+ and 3� excitations of the target and projectile
in coupled-channel calculations is able to reproduce the sub-
barrier fusion cross-sections, whereas doing the same for the
40Ca+132Sn system grossly under-predicts the cross-sections.
In Ref. [17], this was attributed to transfer which manifests
itself in the isovector dynamics.

In all the studied systems, we observe an isovector reduc-
tion in the presence of positive Q�values for transfer chan-
nels. This can be understood from the Cr

I r2
I term in Eq. (3)

which quantitatively dominates. When an isospin equilibra-
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Dynamics 
Transfer contribution to the potential 

Godbey et al., arXiv:1609.08698 



Conclusions 

-  Effect of Pauli exclusion principle on fusion 
-  New microscopic approach:  

Density-Constrained Frozen Hartree-Fock  
 => bare potential 

Density-Constrained Time-Dependent Hartree-Fock  
 => dynamical potential 

-  Pauli repulsion inside the fusion barrier 
-  Deep sub-barrier fusion hindrance 

Perspectives 
-  Nucleosynthesis in stars, e.g., 12C+12C  
-  Energy-dependence  
-  Many-body tunnelling 
 


