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Introduction of Resonance
Ø When the particle energy meets the condition 0<E<Vmax, the particle lies in 
resonant state. And the wave function of resonant state oscillates even at large 
radius r.

                                                                      

Ø Resonant states play an important role not only in nuclear physics, but also in 
many branches of science, such as atomic, molecular, and nanophysics. 
G. Gamow 1928 ZPA, T. Sommerfeld 1998 PRL, N. Moiseyev 1979 PRA,M. Bylicki 2005 PRB
Ø The resonances has been thought to be the cause of some exotic nuclear 
phenomena, such as halo, giant halo, and deformed halo.
 I. Tanihata 1985 PRL, J. Meng 1996 PRL, W. Pöschl 1997 PRL, N. Sandulescu 2000 PRC;  
J. Meng 1998 PRL, Y. Zhang 2012 PRC, I. Hamamoto 2010 PRC(R), S.G. Zhou 2010 PRC(R)
Ø The resonances in the continuum play an important role in the description of the 
nuclear dynamical processes, such as the collective giant resonances.      
 P. Curutchet 1989 PRC, L.G. Cao 2002 PRC                                     
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Methods for exploring resonant states
Ø Several methods based on scattering theory have been employed to study 
resonant states, such as
       R-matrix theory      E. P. Wigner 1947 Phys. Rev., G. M. Hale 1987 PRL
       K-matrix theory      J. Humblet 1991 PRC
       S-matrix method    J. R. Taylor 1972
 

Ø Some bound-state-like methods have been developed, including
       The real stabilization method (RSM)    A.U. Hazi 1970 PRA
       The analytic continuation in the coupling constant (ACCC) method 
                                                                            V.I. Kukuli 1989 Kluwer Academic
       The complex scaling method (CSM)    Y.K. Ho 1983 Phys. Rep.
       The complex momentum representation (CMR) T.Berggre 1968 NPA 
 

Ø The development of these methods in the relativistic framework
       RMF-ACCC   S.C. Yang 2001 CPL, S.S. Zhang 2004 PRC
                             J.Y. Guo 2005 PRC, J.Y. Guo 2006 PRC, S. S. Zhang 2012 PRC
       RMF-RSM     L. Zhang 2008 PRC, Z. Z. Zhang 2010 MPLA                             
       RMF-CSM     J.Y. Guo 2010 PRC, Q. Liu 2013 PRA
      Jost function approach     B.N. Lu 2012 PRL, B.N. Lu 2013 PRC
        RMF-CMR      N.Li 2016 PRL 
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The relativistic mean-field model

The basic  ansatz of  RMF model is a Lagrangian density where nucleons are 
described as Dirac particles which interact via the exchange of mesons (σ, ω 
and ρ) and photon.

where M is the nucleon mass and mσ (gσ), mω (gω), mρ (gρ) are the masses 
(coupling constants) of the respective mesons. 
From the Lagrangian density, the Dirac equation for nucleon and the Klein-
Gordon equation for mesons and photon can be obtained by the classical 
variation principle.
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 The corresponding density

   The Dirac equation for nucleon:

The Klein-Gordon equation for mesons and photon:

the vector and scalar potentials  are as 
following

 By solving these 
coupled equations  
iteratively with the no-
sea and the mean-field 
approximations, we 
get self-consistent 
nuclear potential V(r) 
and S(r).
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The wave function of a free particle with momentum      or wave vector 
                  is denoted as        . In the momentum representaion, the Dirac 
equation can be expressed as 
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Complex momentum representation
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 can be split into  the radial and angular parts as
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Putting the wave function into Eq.(1), the Dirac equation is reduced to the 
following form:
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By turning the integral in Eq.(2) into a sum over a finite set of points       and         
       with a set of weights       , it is then transformed into a matrix equation

For simplicity in computation, we symmetrize it by the transformation
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Complex momentum representation



 To calculate the symmetric matrix, several key points need to be clarified. As 
the integration in Eq. (2) is from zero to infinity, it is necessary to truncate the 
integration to a large enough momentum kmax. When kmax is fixed, the 
integration can be calculated by a sum shown in Eq. (3). 

As a sum with evenly spaced dk and a constant weight wj converges slowly, 
so we replace the sum by the Gauss-Legendre quadrature with a finite grid 
number N, which gives us a 2N × 2N Dirac Hamiltonian matrix (4).

RMF-CMR Method

The bound states are located on the imaginary axis, the continuum states 
follow the contour, and the resonances are located on the fourth quadrant.
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Fig.1 Single-particle spectra for the state h9/2 in the complex k plane.

To display how the resonance expose in the complex energy plane.

Results and Discussion

Ø From the scattering theory, it is known that the bound states populate on 
the imaginary axis, while the resonances locate at the fourth quadrant in  
the momentum plane.

Ø Most solutions follow the contour, corresponding to the nonresonant 
continuum states(black circle).

Ø The resonant state (red diamond)  separated completely from the 
continuum and exposed clearly in the complex momentum plane.

Li, Shi, Guo, Niu, Liang
Phys. Rev. Lett. 117, 062502 (2016)



Fig.2 The resonant state 2f5/2 in four different 
contours in the momentum integration.

To check if the present calculations depend on the choice of contour.

Ø The resonant state exposed 
clearly in differnt contours.

Ø When the contour is deeper, 
the conrresponding continuous 
spectra drop down with the 
contour, while the resonant 
state 2f5/2 doesn't change.

Ø When the contour moves from 
left to right or from right to left, 
the coninuum follows the 
contour, while the resonant 
state keeps at original position.

Results and Discussion



Ø Choose a large enough contour to 
expose all the concerned 
resonances.

Ø We can see clearly that the bound 
states populate on the imaginary 
axis in the momentum plane, 
while the resonances locate at the 
fourth quadrant, and the 
continuum statefollows the 
integration contour.

Ø We can also find it is easily to get 
the broad resonances.

To obtain all of the resoance which we want to concern.

Fig.3 The sigle-neutron spectra in 120Sn in the 
RMF-CMR calculations with the interaction 
NL3.

Results and Discussion
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Summary:
 

Ø Combining with the RMF theory, complex momentum representation
     (CMR) is applied to probe the resonances in 120Sn with the energies,     
     widths, and wavefunctions being obtained. 

Ø Resonant states are exposed clearly in complex momentum plane and 
the resonance parameters can be determined precisely without imposing 
unphysical parameters.

 
 

Prespective:
 

Ø Deal with the pairing correlation by BCS approximation.



Thank you for your attention！


