First Tsukuba-CCS-RIKEN joint workshop on microscopic theories of nuclear structure and dynamics December 12-16, 2016

Relativistic Brueckner-Hartree-Fock Theory for Finite Nuclei

December 14, 2016

Shihang Shen (申时行)

Supervisors: Prof. Shuangquan Zhang and Prof. Jie Meng School of Physics, Peking University

RIKEN Nishina Center

Collaborators: Jinniu Hu, Haozhao Liang, Peter Ring

Introduction

- > Describe nuclei from first principle (ab initio)
 - 1. Realistic nucleon-nucleon (NN) interaction: Chiral force Epelbaum2009RMP, Machleidt2011PR, LQCD Aoki2012PTEP, Beane2011PPNP, OBEP Machleidt2001PRC, ...
 - Many-body framework: no core shell model Barrett2013PPNP, quantum Monte Carlo theory Carlson2015RMP, Coupled Cluster theory Hagen2014RPP, nuclear lattice effective field theory Lee2009PPNP, Brueckner-Hartree-Fock (BHF) theory Bethe1971ARNS, ...
- Brueckner-Hartree-Fock theory with two-body interaction only

¹⁶ O	Bonn C	Bonn B	Bonn A	Exp.
E/A (MeV)	-4.49	-5.35	-6.56	-7.98
r _c (fm)	2.465	2.380	2.291	2.70

BHF for nuclear matter (left) Brockmann1990PRC and ¹⁶O (up) Müther1990PRC.

Introduction

Relativistic Brueckner-Hartree-Fock (RBHF) theory for nuclear matter

Brockmann1990PRC.

Introduction

- ➤ RBHF theory for finite nuclei
 - BHF theory with effective density approximation Müther1990PRC.
 - RBHF theory with Local density approximation: density dependent relativistic Hartree (DDRH) theory Brockmann1992PRL and DDRHF theory Fritz1993PRL.
 - Self consistent RBHF is still not done yet.

Present work: self-consistent RBHF theory for finite nuclei.

Theoretical Framework

Nucleon-Nucleon Interaction

Realistic NN Bonn potential Machleidt1989ANP :

- Bosons: scalar σ , δ ; vector ω , ρ ; pseudoscalar η , π .
- Coupling constants were determined by fitting to the NN scattering and deuteron properties.

Relativistic Hamiltonian

Hamiltonian in second quantized form Brockmann1978PRC, where |a> is complete basis of Dirac spinors with both positive energy and negative energy states.

$$H = \sum_{ab} \langle a|T|b\rangle b_a^{\dagger} b_b + \frac{1}{2} \sum_i \sum_{abcd} \langle ab|V_i|cd\rangle b_a^{\dagger} b_b^{\dagger} b_d b_c,$$

where *i* are for mesons and photon. The matrix elements are defined as

$$\langle a|T|b\rangle = \int d^3x \bar{\psi}_a(\boldsymbol{x}) \left(-i\boldsymbol{\gamma}\cdot\nabla + M\right) \psi_b(\boldsymbol{x}), \\ \langle ab|V_i|cd\rangle = \int d^3x_1 d^3x_2 \bar{\psi}_a(\boldsymbol{x}_1) \bar{\psi}_b(\boldsymbol{x}_2) \Gamma_i(1,2) D_i(\boldsymbol{x}_1,\boldsymbol{x}_2) \psi_c(\boldsymbol{x}_1) \psi_d(\boldsymbol{x}_2).$$

 Γ_i is the interaction vertex, and D_i is the propagator.

Brueckner G-matrix

Sum up ladder diagrams to infinite order Brueckner1954PR

Bethe-Goldstone equation Bethe1971ARNS

$$\langle ab|G(W)|cd\rangle = \langle ab|V|cd\rangle + \sum_{mn} \langle ab|V|mn\rangle \frac{Q(m,n)}{W - \varepsilon_m - \varepsilon_n} \langle mn|G(W)|cd\rangle + \sum_{mn} \langle ab|V|mn\rangle \frac{Q(m,n)}{W - \varepsilon_m - \varepsilon_n} \langle mn|G(W)|cd\rangle + \sum_{mn} \langle ab|V|mn\rangle \frac{Q(m,n)}{W - \varepsilon_m - \varepsilon_n} \langle mn|G(W)|cd\rangle + \sum_{mn} \langle ab|V|mn\rangle \frac{Q(m,n)}{W - \varepsilon_m - \varepsilon_n} \langle mn|G(W)|cd\rangle + \sum_{mn} \langle ab|V|mn\rangle \frac{Q(m,n)}{W - \varepsilon_m - \varepsilon_n} \langle mn|G(W)|cd\rangle + \sum_{mn} \langle ab|V|mn\rangle \frac{Q(m,n)}{W - \varepsilon_m - \varepsilon_n} \langle mn|G(W)|cd\rangle + \sum_{mn} \langle ab|V|mn\rangle \frac{Q(m,n)}{W - \varepsilon_m - \varepsilon_n} \langle mn|G(W)|cd\rangle + \sum_{mn} \langle ab|V|mn\rangle \frac{Q(m,n)}{W - \varepsilon_m - \varepsilon_n} \langle mn|G(W)|cd\rangle + \sum_{mn} \langle mn|G(W)|cd\rangle + \sum_$$

where $W = \varepsilon_c + \varepsilon_d$ is the starting energy, and ε_m , ε_n are the RHF single particle energies. Q is the Pauli operator which forbids the states being scattered below Fermi surface.

Relativistic Brueckner-Hartree-Fock Theory

• Relativistic Hartree-Fock equation in complete basis Long2005

$$\sum_{j} (T_{ij} + U_{ij}) D_{ja} = \varepsilon_a D_{ia}, \qquad \qquad U_{ij} = \sum_{c=1}^{n} \langle ic | \bar{G} | jc \rangle$$

A

where *D* are the expansion coefficients: $|a\rangle = \sum_{i} D_{ia} |i\rangle$.

• RBHF total energy

$$\sum_{cd} \left\{ cd | V | cd \right\} + c \left\{ \int_{m}^{m} \left[n \right] d + c \left\{ \int_{m}^{m'} \left[n \right] d \right\} + c \left\{ \int_{m}^{m'} \left[n \right] d \right\} + c \left\{ \int_{m}^{m'} \left[n \right] d \right\} + c \left\{ \int_{m}^{m'} \left[n \right] d \right\} + c \left\{ \int_{m}^{m'} \left[n \right] d \right\} + c \left\{ \int_{m}^{m'} \left[n \right] d \right\} + c \left\{ \int_{m}^{m'} \left[n \right] d \right\} + c \left\{ \int_{m}^{m'} \left[n \right] d \right\} + c \left\{ \int_{m}^{m'} \left[n \right] d \right\} + c \left\{ \int_{m}^{m'} \left[n \right] d \right\} + c \left\{ \int_{m}^{m'} \left[n \right] d \right\} + c \left\{ \int_{m'}^{m'}$$

Results and Discussion

Numerical Details

- Object: ¹⁶O, ⁴⁰Ca
- Interaction: Bonn A potential Machleidt1989ANP
- Cut-offs for basis space: l_{cut} = 20, ϵ_{cut} = 1100 MeV, ϵ_{Dcut} = -1700 MeV
- Basis: self-consistent RHF basis (for fixed Dirac Woods-Saxon basis, see S. Shen, J. Hu, H. Liang, J. Meng, P. Ring, and S. Zhang, *Chin. Phys. Lett.* **10**, 102103 (2016))
- Coulomb exchange term: relativistic local density approximation Gu2013PRC
- Center-of-mass correction: included in RHF variation Chabanat1998NPA
- Box size: R = 7 fm

Convergence to Energy Cut-Off

• Total energy and charge radius of ¹⁶O as a function of energy cut-off.

• Satisfying convergence is achieved for $\varepsilon_{cut} = 1.1$ GeV.

RBHF and RBHF with Local Density Approximation

Total energy and charge radius of ¹⁶O calculated by RBHF and DDRH or DDRHF (RBHF with LDA). All calculations using Bonn A potential.

• There is big uncertainty in LDA calculation, where the present self-consistent RBHF calculation can provide a solid benchmark.

Different ab initio Methods for ¹⁶O

Energy, charge radius, point matter radius, and π1p spin-orbit splitting in ¹⁶O with Bonn A in RBHF; with Bonn A in nonrelativistic renormalized BHF Muether1990PRC; with V_{low-k} derived from Argonne v18 in BHF Hu2016PRC; with N³LO in NCSM Roth2011PRL and Couple-Cluster method (CC) Hagen2009PRC.

	E (MeV)	r _c (fm)	r _m (fm)	$\Delta E_{\pi 1 p}^{ls}$ (MeV)
Exp.	-127.6	2.70	2.54	6.3
RBHF, Bonn A	-113.5	2.56	2.42	5.4
BHF, Bonn A	-105.0	2.29	-	7.5
BHF, AV18	-134.2	-	1.92	13.0
NCSM, N ³ LO	-119.7(6)	-	-	-
CC, N ³ LO	-121.0	-	2.30	-

- Relativistic effect is important to improve description.
- The results of RBHF are similar to other state-of-the-art ab initio results.

RBHF for ⁴⁰Ca

 Energy, charge radius, point matter radius, and π1d spin-orbit splitting of ⁴⁰Ca. Results of Bonn A in RBHF, comparing with V_{low-k} derived from Argonne v18 in non-relativistic BHF Hu2016, importance-truncated no-core shell model (IT-NCSM) Roth2007PRL; and coupled cluster (CC) Hagen2007PRC;

	E (MeV)	r _c (fm)	r _m (fm)	$\Delta E_{\pi 1 p}^{ls}$ (MeV)
Exp.	-342.1	3.48	-	6.6 ± 2.5
RBHF, Bonn A	-290.8	3.23	3.11	5.9
BHF, AV18	-552.1	-	2.20	24.9
IT-NCSM, AV18	-461.8	-	2.27	-
CC, AV18	-502.9	-	-	-

Storage: 1100 Gb CPU time: 1720 H

RBHF for ⁴⁰Ca

Single-particle spectrum (left) and charge density distribution (right) of ⁴⁰Ca in RBHF with Bonn A interaction.

• RBHF theory is very promising to describe the heavy nuclei.

Summary and Perspective

- Full relativistic Brueckner-Hartree-Fock equations have been solved self-consistently for the first time for finite nuclei.
- \Box ¹⁶O is taken as an example, and convergence is achieved near ε_{cut} = 1.1 GeV.
- □ ¹⁶O, and ⁴⁰Ca have been studied with Bonn A interaction. The resulting binding energies and charge radii are reasonably good. Also the spin-orbit splitting are well reproduced.

Future Work

- □ To improve the convergence, e.g. by using V-low k or SRG technique.
- □ To investigate with relativistic LQCD force or relativistic chiral force (Ren et al. arXiv:1611.08475).
- To learn from the G-matrix and provide information to nuclear energy density functional and other studies.

THANK YOU!