External Review on Center for Computational Sciences, University of Tsukuba 19 Feb., 2014@CCS, Tsukuba

Multi-nucleon transfer reaction by TDHF

<u>Kazuyuki Sekizawa</u>

(Univ. Tsukuba, Japan)

In collaboration with

Kazuhiro Yabana

Graduate School of Pure and Applied Sciences, Univ. Tsukuba Center for Computational Sciences, Univ. Tsukuba

OUTLINE

What I show today

> To what extent the TDHF theory describes the MNT reaction, quantitatively.

What I show today

> To what extent the TDHF theory describes the MNT reaction, quantitatively.

Contents

- 1. Mechanisms of the MNT reaction
- 2. Particle number projection method

3. Excitation energy and particle evaporation

What I show today

> To what extent the TDHF theory describes the MNT reaction, quantitatively.

Contents

1. Mechanisms of the MNT reaction

2. Particle number projection method

3. Excitation energy and particle evaporation

K. Sekizawa

Multi-nucleon transfer reaction by TDHF

Wed., 19 Feb., 2014 2/9

Multi-nucleon transfer reaction by TDHF

Wed., 19 Feb., 2014 2/9

K. Sekizawa

Multi-nucleon transfer reaction by TDHF

Wed., 19 Feb., 2014 2/9

1. Mechanisms of the MNT reaction

2. Particle number projection method

3. Excitation energy and particle evaporation

1. Mechanisms of the MNT reaction

2. Particle number projection method

3. Excitation energy and particle evaporation

How to calculate the transfer probability

Particle number projection method

C. Simenel, Phys. Rev. Lett. 105, 192701 (2010)

► ✔ Particle number projection operator

$$\hat{P}_n = \frac{1}{2\pi} \int_0^{2\pi} d\theta \ e^{i(n-\hat{N}_{\rm P})\theta}$$

 $\hat{N}_{\rm P}$: Number operator of the spatial region $V_{\rm P}$ $\hat{N}_{\rm P} = \int_{V_{\rm P}} d^3 r \sum_{i=1}^{N_{\rm P}+N_{\rm T}} \delta(\boldsymbol{r}-\boldsymbol{r}_i)$

 $N=N_{\rm P}+N_{\rm T}$: Total number of nucleons

 \rightarrow Probability P_n : *n* nucleons are in the V_P and *N*-*n* nucleons are in the V_T —

$$P_{n} = \langle \Phi | \hat{P}_{n} | \Phi \rangle$$

= $\frac{1}{2\pi} \int_{0}^{2\pi} d\theta \ e^{in\theta} \det \{ \langle \phi_{i} | \phi_{j} \rangle_{V_{T}} + e^{-i\theta} \langle \phi_{i} | \phi_{j} \rangle_{V_{P}} \}$

Slater determinantSingle-particle w.f.Overlap integral in respective regions $\Phi(\boldsymbol{x}_1, \cdots, \boldsymbol{x}_N) = \frac{1}{\sqrt{N!}} \det\{\phi_i(\boldsymbol{x}_j)\}$ $\phi_i(\boldsymbol{x}) \equiv \phi_i(\boldsymbol{r}, \sigma)$ $\langle \phi_i | \phi_j \rangle_{\tau} = \int_{\tau} d^3 x \, \phi_i^*(\boldsymbol{x}) \phi_j(\boldsymbol{x})$ $i = 1, \cdots, N_{\rm P} + N_{\rm T}$ $\tau = V_{\rm P} \text{ or } V_{\rm T}$

3/9

Results of the TDHF calculation: ${}^{58}_{28}Ni_{30} + {}^{208}_{82}Pb_{126}$ at $E_{lab} = 328.4$ MeV

K. Sekizawa and K. Yabana, Phys. Rev. C 88, 014614 (2013)

Transfer probabilities

$$P_{n} = \left\langle \Phi \left| \hat{P}_{n} \right| \Phi \right\rangle = \frac{1}{2\pi} \int_{0}^{2\pi} d\theta \ e^{in\theta} \det \left\{ \left\langle \phi_{i} \right| \phi_{j} \right\rangle_{V_{T}} + e^{-i\theta} \left\langle \phi_{i} \right| \phi_{j} \right\rangle_{V_{P}} \right\}$$
: The projection method

Results of the TDHF calculation: ${}^{58}_{28}Ni_{30} + {}^{208}_{82}Pb_{126}$ at $E_{lab} = 328.4$ MeV

K. Sekizawa and K. Yabana, Phys. Rev. C 88, 014614 (2013)

Transfer probabilities

$$P_{n} = \left\langle \Phi \left| \hat{P}_{n} \right| \Phi \right\rangle = \frac{1}{2\pi} \int_{0}^{2\pi} d\theta \, e^{in\theta} \det \left\{ \left\langle \phi_{i} \right| \phi_{j} \right\rangle_{V_{T}} + e^{-i\theta} \left\langle \phi_{i} \right| \phi_{j} \right\rangle_{V_{P}} \right\} \, : \text{The projection method}$$

• At large impact parameter (3 fm < *b*) *Charge equilibration*

Results of the TDHF calculation: ${}^{58}_{28}Ni_{30} + {}^{208}_{82}Pb_{126}$ at $E_{lab} = 328.4$ MeV

K. Sekizawa and K. Yabana, Phys. Rev. C 88, 014614 (2013)

Transfer probabilities

$$P_{n} = \left\langle \Phi \left| \hat{P}_{n} \right| \Phi \right\rangle = \frac{1}{2\pi} \int_{0}^{2\pi} d\theta \, e^{in\theta} \det \left\{ \left\langle \phi_{i} \right| \phi_{j} \right\rangle_{V_{T}} + e^{-i\theta} \left\langle \phi_{i} \right| \phi_{j} \right\rangle_{V_{P}} \right\} \, : \text{The projection method}$$

At large impact parameter (3 fm < b) Charge equilibration
At small impact parameter (b < 3 fm)

Neck breaking

Results of the TDHF calculation: ${}_{28}^{58}Ni_{30} + {}_{82}^{208}Pb_{126}$ at $E_{lab} = 328.4 \text{ MeV}$

K. Sekizawa and K. Yabana, Phys. Rev. C 88, 014614 (2013)

Production cross sections for ⁵⁸Ni-like fragments

Exp.: L. Corradi et al., Phys. Rev. C 66, 024606 (2002)

$$\sigma_{\rm tr}(Z,N) = 2\pi \int_{b_{\rm min}}^{\infty} P_Z^{(p)}(b) P_N^{(n)}(b) \, db \quad : \text{Production cross section}$$

Horizontal axis: Number of neutrons in lighter (⁵⁸Ni-like) fragments
Labels "(- x p)", x=0, ..., 6: Number of removed protons from ⁵⁸Ni

> TDHF reproduces measurement reasonably, when number of transferred nucleons is small

1. Mechanisms of the MNT reaction

2. Particle number projection method

3. Excitation energy and particle evaporation

1. Mechanisms of the MNT reaction

2. Particle number projection method

3. Excitation energy and particle evaporation

Effects of particle evaporation

\checkmark Deexcitation processes by particle emission

Effects of particle evaporation

\checkmark Deexcitation processes by particle emission

Effects of particle evaporation

\checkmark Deexcitation processes by particle emission

➢ Our approach to include the effects of particle evaporation

(1) Evaluate internal energy

 $E_{N,Z}$

Projection method

(2) Subtract the g.s. energy

$$E_{N,Z}^* = E_{N,Z} - E_{g.s.}$$

Excitation energy

(3) Put $E_{N,Z}^*$ into a statistical model

$$P_{n,z}^{\text{evap.}}$$

Evaporation probabilities

> The discrepancy is somewhat remedied, but not enough.

It may indicate the importance of correlation effects beyond the mean-field level.

Summary

- ✓ I showed how to calculate nucleon transfer probabilities from the TDHF wave function. (Projection method: C. Simenel, PRL105(2010)192701)
- ✓ I presented results of the TDHF calculation for ${}^{58}Ni+{}^{208}Pb$ reaction.
 - (K. Sekizawa and K. Yabana, PRC88(2013)014614)
- ✓ I discussed how to include effects of particle evaporation.

Perspective

≻ We try to find a preferable condition to produce *N*-rich unstable nuclei.