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Nuclear Pasta Matter

Nuclear Pasta Matter

@ nuclear pasta appears at approx.
p=1/8po, po~0.16fm=3

@ several shapes appear like “spaghetti
(rod-like) shapes (b) or “lasagna”
(slab-like) shapes (c)

@ at higher densities inverted pasta
appears (holes have rod-like or
sphere-like structure) (d and e)

Figure: several pasta shapes (Oyamatsu et. al.)
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Nuclear Pasta Matter

Sites for Nuclear Pasta

Neutron star

(Coulomb crystal of n-rich nuclei
+ relativistic degenerate ')

(Coulomb crystal of n-rich nuclei
+dripped n + relativistic degenerate ")

p-several p;

Hyperons?

Meson
condensates?

Quark matter?

(uniform nuclear matter)
(n+p+e+[c]) 7

neutron drip = " normal nuclear density p-p,=0.165 fm = 3x10'‘g cm”
p=4x10'g em®
——~tkm —— ~10km

Figure: schematic picture of a neutron star (G.

Watanabe et. al.)

@ in inner crust of neutron stars

@ proton fraction of X, < 0.1
o thickness of the layer is about 100m

Core Collapse Supernovae

Figure: Supernova calculation (Janka et al.)

@ after 100 msec central density reaches
po

@ core reaches temperatures of several
MeV

o total amount ~20% of total mass

— periodic boundary conditions

Schuetrumpf
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Method Twist-Averaged Boundary Conditions
Hartree-Fock Method

Twist-Averaged Boundary Conditions

strictly periodic boundary conditions introduce finite volume-effects!!!

@ Floquet-Bloch theorem ‘
Yiaa(F, £) = tag(F, £) & 2 o
periodic €3]
02
. L. < 10
@ resulting boundary conditions g
=~
. S
'(,Zlag(r + T, t) = e“glwag(r, t) | R
— X, =0.5, kp = 1.32fm™" X
.. .. . L — . 4 X
@ periodic BC is just one solution (6; = 0) 0% 00 700
@ averaging of observables particle number A
Figure: kinetic energy for periodic and
39 twist-averaged boundary conditions.
(0(¢)) = g3 /// a6 (Wo(2)|OWa (1)) BS, W. Nazarewicz PRC 92, 045806 (2015)
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Method Twist-Averaged Boundary Conditions
Hartree-Fock Method

The Hartree-Fock Code Sky3D

equidistant lattice with about 1fm lattice spacing

full 3d, no symmetry assumptions

using FFT for derivatives
@ state of the art Skyrme forces

@ exact treatment of Coulomb force (non-periodic Coulomb possible)

Static Iterations Time evolution
Solving the Schrodinger equations for a Evolving the initial state (Slater
single Slater determinant in the mean-field determinant) in time with the time
approximation evolution operator:
h(oytpae(r) = captbas(r) Paq(r, t) = e’i’:’t/hwaq(r, t=0)
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Ground State Calculations (nuclear pasta)
Dynamic Simulations (finite nuclei)
Dynamic Simulations (nuclear pasta)

Results

Initialization of the static calculations with
o lowest plane wave states (spin saturated)
e Xp=1/3

@ additional potential for the first 200 iterations which forces the matter to form a
specific shape

Schuetrumpf Large scale Hartree-Fock calculations with twi:




Ground State Calculations (nuclear pasta)
Dynamic Simulations (finite nuclei)
Dynamic Simulations (nuclear pasta)

Results

Slab varying L, = L,

Le=Ly (fm)
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BS, W. Nazarewicz PRC 92, 045806 (2015)
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Ground State Calculations (nuclear pasta)
Dynamic Simulations (finite nuclei)
Dynamic Simulations (nuclear pasta)

Results

Minimal surfaces

P G

@ local minimal surface for given boundary conditions
o divides space into two equal subspaces
First order nodal approximation potentials:

P: ¢p(x,y,2) = ¢o(cos x + cosy + cos z)
G: ¢ (x,y,2) = ¢o(cos xsiny + cosy sin z + cos z sin x)
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Results

Which is the ground state shape?

Ground State Calculations (nuclear pasta)
Dynamic Simulations (finite nuclei)
Dynamic Simulations (nuclear pasta)

N

P G

@ Vary 'physical’ direction
e p=0.07125fm 3

huetrumpf

E/A (MeV)

ES/A (MeV)
o o o
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BS, W. Nazarewicz PRC 92, 045806 (2015)
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Ground State Calculations (nuclear pasta)
Dynamic Simulations (finite nuclei)

Results A q
Dynamic Simulations (nuclear pasta)

Problems for 3d TD-DFT for vibrating finite nuclei

@ spurious finite-volume effects due to limited box sizes

usually periodic or reflecting boundary conditions

@ evaporated matter is reflected at boundaries or enters box from opposite side

@ k-space is quantized according to box length
@ problem can be solved in 1d with very large boxes

@ or in 3d with absorbing boundary conditions
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Ground State Calculations (nuclear pasta)
Dynamic Simulations (finite nuclei)

Resul 15 &l J
esults Dynamic Simulations (nuclear pasta)

Absorbing boundary conditions (ABC)

masking function: ¥ — Yo f(r) with (equivalent to imaginary potential)

1 ifr<L/27IabS
F(r) = Jcos (543 )" i L/2— b < r < L/2
0 ifx>1L/2
— L=32 fm, l,s=6 fm
— L=40 fm, l,,s=10 fm
1.0 T T T
0.8 | .
1
~~~
06} . £
~ ~
= N
04| . -1
02| .
-10 0 10
0.0 — L  (fm)
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Results

Low energy excitations in 0

Ground State Calculations (nuclear pasta)
Dynamic Simulations (finite nuclei)
Dynamic Simulations (nuclear pasta)
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Figure: *®0 isoscalar quadrupole excitation

with E* =3 MeV

B. Schuetrumpf

BS, W. Nazarewicz, P.-G. Reinhard PRC 93,

054304 (2016)
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Figure: 80 isovector dipole excitation with

E* =1 MeV
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Ground State Calculations (nuclear pasta)
Dynamic Simulations (finite nuclei)

Resul 0 o 2
esults Dynamic Simulations (nuclear pasta)

High energy excitations in 160
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Ground State Calculations (nuclear pasta)
Dynamic Simula (finite nuclei)
Dynamic Simulations (nuclear pasta)

Results

Periodic vs. absorbing boundary conditions
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Ground State Calculations (nuclear pasta)
Dynamic Simula (finite nuclei)
Dynamic Simulations (nuclear pasta)

Results

Periodic vs. twist-averaged boundary conditions
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Ground State Calculations (nuclear pasta)
Dynamic Simulations (finite nuclei)

Resul o .
esults Dynamic Simulations (nuclear pasta)

Twist-averaged boundary conditions for excited rod

Center of Mass

6 - T T T T T
@ rod configuration along z axis
4
@ excitation with
2
b = W exp(—iS(r)) Eo
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Conclusion & Outlook

Conclusion & Outlook

Conclusion:

@ TABC is a good method to get answers for strictly periodic systems with small
boxes and a small number of particles in static as well as in time-dependent
calculations

o for defects of structures which are not strictly periodic we have to go to bigger
boxes anyway

@ TABC can also be used for finite nuclei if not too many particles are evaporated
Outlook:

@ can be used in many other applications for periodic systems e.g. oscillating slabs
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Conclusion & Outlook

Collaborators:
Witek Nazarewicz and Paul-Gerhard Reinhard

Thank you for your attention
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