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Nuclear Pasta Matter

Figure: several pasta shapes (Oyamatsu et. al.)

nuclear pasta appears at approx.
ρ = 1/8 ρ0 , ρ0 ≈ 0.16fm−3

several shapes appear like “spaghetti”
(rod-like) shapes (b) or “lasagna”
(slab-like) shapes (c)

at higher densities inverted pasta
appears (holes have rod-like or
sphere-like structure) (d and e)
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Sites for Nuclear Pasta

Neutron star

Figure: schematic picture of a neutron star (G.
Watanabe et. al.)

in inner crust of neutron stars

proton fraction of Xp . 0.1

thickness of the layer is about 100m

Core Collapse Supernovae

Figure: Supernova calculation (Janka et al.)

after 100 msec central density reaches
ρ0

core reaches temperatures of several
MeV

total amount ∼20% of total mass

→ periodic boundary conditions
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Twist-Averaged Boundary Conditions
Hartree-Fock Method

Twist-Averaged Boundary Conditions

strictly periodic boundary conditions introduce finite volume-effects!!!

Floquet-Bloch theorem

ψαq(r , t) = uαq(r , t)︸ ︷︷ ︸
periodic

eiqr

resulting boundary conditions

ψαθ(r + T i , t) = eiθiψαθ(r , t)

periodic BC is just one solution (θi = 0)

averaging of observables

〈Ô(t)〉 =
1

8π3

2π∫∫∫
0

d3θ 〈Ψθ(t)|Ô|Ψθ(t)〉
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Figure: kinetic energy for periodic and
twist-averaged boundary conditions.
BS, W. Nazarewicz PRC 92, 045806 (2015)
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Twist-Averaged Boundary Conditions
Hartree-Fock Method

The Hartree-Fock Code Sky3D

equidistant lattice with about 1fm lattice spacing

full 3d, no symmetry assumptions

using FFT for derivatives

state of the art Skyrme forces

exact treatment of Coulomb force (non-periodic Coulomb possible)

Static Iterations
Solving the Schrödinger equations for a
single Slater determinant in the mean-field
approximation

ĥ(θ)ψαθ(r) = εαθψαθ(r)

Time evolution
Evolving the initial state (Slater
determinant) in time with the time
evolution operator:

ψαq(r , t) = e−iĤt/~ψαq(r , t = 0)
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Ground State Calculations (nuclear pasta)
Dynamic Simulations (finite nuclei)
Dynamic Simulations (nuclear pasta)

Setup

Initialization of the static calculations with

lowest plane wave states (spin saturated)

XP = 1/3

additional potential for the first 200 iterations which forces the matter to form a
specific shape
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Ground State Calculations (nuclear pasta)
Dynamic Simulations (finite nuclei)
Dynamic Simulations (nuclear pasta)

Slab varying Lx = Ly

φslab(x , y , z) = φ0 cos(2πx/L)

Vary box length in translational
invariant directions

ρ = 0.07fm−3

BS, W. Nazarewicz PRC 92, 045806 (2015)
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Ground State Calculations (nuclear pasta)
Dynamic Simulations (finite nuclei)
Dynamic Simulations (nuclear pasta)

Minimal surfaces

P G
local minimal surface for given boundary conditions

divides space into two equal subspaces

First order nodal approximation potentials:
P: φP(x , y , z) = φ0(cos x + cos y + cos z)
G: φG(x , y , z) = φ0(cos x sin y + cos y sin z + cos z sin x)
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Ground State Calculations (nuclear pasta)
Dynamic Simulations (finite nuclei)
Dynamic Simulations (nuclear pasta)

Which is the ground state shape?

S

P G

Vary ’physical’ direction

ρ = 0.07125fm−3
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Ground State Calculations (nuclear pasta)
Dynamic Simulations (finite nuclei)
Dynamic Simulations (nuclear pasta)

Problems for 3d TD-DFT for vibrating finite nuclei

spurious finite-volume effects due to limited box sizes

usually periodic or reflecting boundary conditions

1 evaporated matter is reflected at boundaries or enters box from opposite side

2 k-space is quantized according to box length

problem can be solved in 1d with very large boxes

or in 3d with absorbing boundary conditions
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Ground State Calculations (nuclear pasta)
Dynamic Simulations (finite nuclei)
Dynamic Simulations (nuclear pasta)

Absorbing boundary conditions (ABC)

masking function: ψα → ψαf (r) with (equivalent to imaginary potential)

f (r) =


1 if r < L/2− labs

cos
(
π
2

r−L/2+labs
labs

)p
if L/2− labs < r ≤ L/2

0 if x ≥ L/2
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Ground State Calculations (nuclear pasta)
Dynamic Simulations (finite nuclei)
Dynamic Simulations (nuclear pasta)

Low energy excitations in 16O
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Figure: 16O isoscalar quadrupole excitation
with E∗ = 3 MeV

BS, W. Nazarewicz, P.-G. Reinhard PRC 93,
054304 (2016)
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Figure: 16O isovector dipole excitation with
E∗ = 1 MeV
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Ground State Calculations (nuclear pasta)
Dynamic Simulations (finite nuclei)
Dynamic Simulations (nuclear pasta)

High energy excitations in 16O
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Figure: 16O isovector dipole excitation with
E∗ = 20 MeV
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Figure: 16O isoscalar quadrupole excitation
with E∗ = 20 MeV

BS, W. Nazarewicz, P.-G. Reinhard PRC 93, 054304 (2016)
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Ground State Calculations (nuclear pasta)
Dynamic Simulations (finite nuclei)
Dynamic Simulations (nuclear pasta)

Periodic vs. absorbing boundary conditions
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Ground State Calculations (nuclear pasta)
Dynamic Simulations (finite nuclei)
Dynamic Simulations (nuclear pasta)

Periodic vs. twist-averaged boundary conditions
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Ground State Calculations (nuclear pasta)
Dynamic Simulations (finite nuclei)
Dynamic Simulations (nuclear pasta)

Twist-averaged boundary conditions for excited rod

rod configuration along z axis

excitation with

ψ → ψ exp(−iS(r))

S(r) ∼ x sin(2πz/lz )

vx ∼
∂S

∂x
∼ sin(2πz/lz )

Center of Mass
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Conclusion & Outlook

Conclusion:

TABC is a good method to get answers for strictly periodic systems with small
boxes and a small number of particles in static as well as in time-dependent
calculations

for defects of structures which are not strictly periodic we have to go to bigger
boxes anyway

TABC can also be used for finite nuclei if not too many particles are evaporated

Outlook:

can be used in many other applications for periodic systems e.g. oscillating slabs
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Collaborators:
Witek Nazarewicz and Paul-Gerhard Reinhard

Thank you for your attention
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