Large scale static and time-dependent Hartree-Fock calculations with twist-averaged boundary conditions

Bastian Schuetrumpf

FRIB/NSCL Michigan State University

December 15, 2016

Nuclear Pasta Matter

2 Method

- Twist-Averaged Boundary Conditions
- Hartree-Fock Method

3 Results

- Ground State Calculations (nuclear pasta)
- Dynamic Simulations (finite nuclei)
- Dynamic Simulations (nuclear pasta)

Conclusion & Outlook

Nuclear Pasta Matter

Figure: several pasta shapes (Oyamatsu et. al.)

- nuclear pasta appears at approx. $\rho = 1/8 \, \rho_{\rm 0} \, , \quad \rho_{\rm 0} \approx 0.16 {\rm fm}^{-3} \, . \label{eq:rho}$
- several shapes appear like "spaghetti" (rod-like) shapes (b) or "lasagna" (slab-like) shapes (c)
- at higher densities inverted pasta appears (holes have rod-like or sphere-like structure) (d and e)

Sites for Nuclear Pasta

Neutron star

Figure: schematic picture of a neutron star (G. Watanabe et. al.)

- in inner crust of neutron stars
- proton fraction of $X_p \lesssim 0.1$
- thickness of the layer is about 100m

Core Collapse Supernovae

Figure: Supernova calculation (Janka et al.)

- after 100 msec central density reaches ρ_0
- core reaches temperatures of several MeV
- \bullet total amount ${\sim}20\%$ of total mass

\rightarrow periodic boundary conditions

Twist-Averaged Boundary Conditions Hartree-Fock Method

Twist-Averaged Boundary Conditions

strictly periodic boundary conditions introduce finite volume-effects!!!

Floquet-Bloch theorem

$$\psi_{\alpha q}(\mathbf{r},t) = \underbrace{u_{\alpha q}(\mathbf{r},t)}_{\text{periodic}} e^{i\mathbf{q}\mathbf{r}}$$

resulting boundary conditions

$$\psi_{\alpha\theta}(\mathbf{r}+\mathbf{T}_i,t)=e^{\mathrm{i}\theta_i}\psi_{\alpha\theta}(\mathbf{r},t)$$

periodic BC is just one solution (θ_i = 0)
averaging of observables

$$\langle \hat{O}(t)
angle = rac{1}{8\pi^3} \int \!\!\!\!\int \!\!\!\!\int \!\!\!\!\int d^3 heta \, \langle \Psi_{ heta}(t) | \hat{O} | \Psi_{ heta}(t)
angle$$

Figure: kinetic energy for periodic and twist-averaged boundary conditions. *BS, W. Nazarewicz PRC 92, 045806 (2015)*

Twist-Averaged Boundary Conditions Hartree-Fock Method

The Hartree-Fock Code Sky3D

- · equidistant lattice with about 1fm lattice spacing
- full 3d, no symmetry assumptions
- using FFT for derivatives
- state of the art Skyrme forces
- exact treatment of Coulomb force (non-periodic Coulomb possible)

Static Iterations

Solving the Schrödinger equations for a single Slater determinant in the mean-field approximation

$$\hat{h}_{(\theta)}\psi_{\alpha\theta}(\mathbf{r})=\epsilon_{\alpha\theta}\psi_{\alpha\theta}(\mathbf{r})$$

Time evolution

Evolving the initial state (Slater determinant) in time with the time evolution operator:

$$\psi_{lpha oldsymbol{q}}(oldsymbol{r},t)=e^{-\mathrm{i}\hat{H}t/\hbar}\psi_{lpha oldsymbol{q}}(oldsymbol{r},t=0)$$

Ground State Calculations (nuclear pasta) Dynamic Simulations (finite nuclei) Dynamic Simulations (nuclear pasta)

Initialization of the static calculations with

- lowest plane wave states (spin saturated)
- $X_P = 1/3$
- additional potential for the first 200 iterations which forces the matter to form a specific shape

Ground State Calculations (nuclear pasta) Dynamic Simulations (finite nuclei) Dynamic Simulations (nuclear pasta)

Slab varying $L_x = \overline{L_y}$

- $\phi_{\text{slab}}(x, y, z) = \phi_0 \cos(2\pi x/L)$
- Vary box length in translational invariant directions
- $\rho = 0.07 \text{fm}^{-3}$

BS, W. Nazarewicz PRC 92, 045806 (2015)

Ground State Calculations (nuclear pasta) Dynamic Simulations (finite nuclei) Dynamic Simulations (nuclear pasta)

Minimal surfaces

- local minimal surface for given boundary conditions
- divides space into two equal subspaces

First order nodal approximation potentials:

$$P: \phi_P(x, y, z) = \phi_0(\cos x + \cos y + \cos z)$$

G: $\phi_G(x, y, z) = \phi_0(\cos x \sin y + \cos y \sin z + \cos z \sin x)$

Ground State Calculations (nuclear pasta) Dynamic Simulations (finite nuclei) Dynamic Simulations (nuclear pasta)

Which is the ground state shape?

Ground State Calculations (nuclear pasta) Dynamic Simulations (finite nuclei) Dynamic Simulations (nuclear pasta)

Problems for 3d TD-DFT for vibrating finite nuclei

- spurious finite-volume effects due to limited box sizes
- usually periodic or reflecting boundary conditions
 - evaporated matter is reflected at boundaries or enters box from opposite side
 - A k-space is quantized according to box length
- problem can be solved in 1d with very large boxes
- or in 3d with absorbing boundary conditions

Ground State Calculations (nuclear pasta) Dynamic Simulations (finite nuclei) Dynamic Simulations (nuclear pasta)

Absorbing boundary conditions (ABC)

masking function: $\psi_{lpha} o \psi_{lpha} f(r)$ with (equivalent to imaginary potential)

$$f(r) = \begin{cases} 1 & \text{if } r < L/2 - l_{\text{abs}} \\ \cos\left(\frac{\pi}{2} \frac{r - L/2 + l_{\text{abs}}}{l_{\text{abs}}}\right)^{p} & \text{if } L/2 - l_{\text{abs}} < r \le L/2 \\ 0 & \text{if } x \ge L/2 \end{cases}$$

B. Schuetrumpf Large scale Hartree-Fock calculations with twist-averaged BC

Ground State Calculations (nuclear pasta) Dynamic Simulations (finite nuclei) Dynamic Simulations (nuclear pasta)

Low energy excitations in ¹⁶O

Figure: ¹⁶O isoscalar quadrupole excitation with $E^* = 3$ MeV

BS, W. Nazarewicz, P.-G. Reinhard PRC 93, 054304 (2016)

Ground State Calculations (nuclear pasta) Dynamic Simulations (finite nuclei) Dynamic Simulations (nuclear pasta)

High energy excitations in ¹⁶O

Figure: ¹⁶O isovector dipole excitation with $E^* = 20 \text{ MeV}$

Figure: ¹⁶O isoscalar quadrupole excitation with $E^* = 20$ MeV

BS, W. Nazarewicz, P.-G. Reinhard PRC 93, 054304 (2016)

Ground State Calculations (nuclear pasta) Dynamic Simulations (finite nuclei) Dynamic Simulations (nuclear pasta)

Periodic vs. absorbing boundary conditions

Ground State Calculations (nuclear pasta) Dynamic Simulations (finite nuclei) Dynamic Simulations (nuclear pasta)

Periodic vs. twist-averaged boundary conditions

Ground State Calculations (nuclear pasta) Dynamic Simulations (finite nuclei) Dynamic Simulations (nuclear pasta)

Twist-averaged boundary conditions for excited rod

Center of Mass

- rod configuration along z axis
- excitation with

$$\psi \rightarrow \psi \exp(-iS(\mathbf{r}))$$

$$S(\mathbf{r}) \sim x \sin(2\pi z/l_z)$$

$$v_x \sim \frac{\partial S}{\partial x} \sim \sin(2\pi z/l_z)$$

Conclusion & Outlook

Conclusion:

- TABC is a good method to get answers for strictly periodic systems with small boxes and a small number of particles in static as well as in time-dependent calculations
- for defects of structures which are not strictly periodic we have to go to bigger boxes anyway
- TABC can also be used for finite nuclei if not too many particles are evaporated Outlook:
 - can be used in many other applications for periodic systems e.g. oscillating slabs

Collaborators: Witek Nazarewicz and Paul-Gerhard Reinhard

Thank you for your attention