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Octupoles 0.0

The shape of many nuclei is deformed in the intrinsic frame (a mean field artifact)

The restoration of  broken symmetries (transformation to the LAB frame) generates a 
“band” for each intrinsic state. Band members have quantum numbers of the symmetry

Deformation described in terms of  multipole moments 

Deformation Symmetry Bands Transitions

Quadrupole Rotational Rotational (J) E2

Octupole Parity Parity doublets (π) E1,E3
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Octupoles 1.0 (Octupole deformation)

● Octupole deformation shows up as minima of 
E

HFB
(Q

30
)

● E(Q
30

)=E(-Q
30

) (Parity invariance)

● In the LAB frame: parity doublets in the limit 
when there is  no tunneling through the barrier

● Strong E3 transition strengths 
Three typical results obtained with Gogny D1S



  

Octupoles 1.0 (Vibrational states)

● The nucleus can vibrate around its equilibrium position 

● Vibration characterized by the new dynamical variables

● Harmonic oscillator like quantum states (phonons) carrying angular momentum L and parity 
π=(-1)L

● The oscillator frequency and characteristic length depend upon two parameters: spring 
constant and inertia. The latter is not easy to determine in mean field theories.

● Energies and transition strength depend on those two parameters.

● Octupole vibration corresponds to L=3 and the corresponding phonon carries 3 units of 
angular momentum  

● Well defined only in weakly 
deformed nuclei ?

● Quadrupole-Octupole coupling
● Two octupole phonons and 



  

Microscopic description

Our goal is to describe octupole correlations in an unified framework to treat in the 
same footing vibrations, octupole deformed states and any intermediate situation

● Use of an “universal” interaction (EDF) is required for predictability

● Based on  Hartree Fock Bogoliubov (HFB)  intrinsic states. Must be flexible 
enough to accommodate many physical situations like quadrupole and 
octupole coupling

● Symmetry restoration:

➢ Angular momentum projection 
➢ Particle Number projection
➢ Parity projection

● Configuration mixing

Can be avoided if the nucleus is strongly 
deformed (Rotational model) and 
quadrupole-octupole mixing neglegible



  

Gogny force

Parameters fixed by fitting some general nuclear matter properties and a few values 
from finite  nuclei (binding energies, s.p.e. splittings and some radii information).

D1S: surface energy fine tuned to reproduce fission barriers

D1N: Realistic neutron matter equation of state reproduced

D1M: Realistic neutron matter + Binding energies of essentially all nuclei with 
approximate beyond mean field effects

Pairing and time-odd fields are taken from the interaction itself

The Gogny force is a popular choice but others (Skyrme, relativistic, etc) are possible



  

Intrinsic HFB configurations 

● Configurations at and around the HFB minimum
● Axially symmetric HFB with constraints in Q

20 
Q

30
 

● Efficient second order gradient solver
●  Finite range Gogny (D1S, D1M, etc)

The  example corresponds to 144Ba with rather strong quadrupole-octupole mixing



  

Symmetry restoration

Parity symmetry is broken when β
3
≠0

And take the appropriate linear combination of the  two shapes to restore the symmetry

To restore the symmetry, apply the 
symmetry operator to the intrinsic 
wave function

The procedure works because of the special properties (group theory) of the symmetry 
operator 

Parity restoration is so simple because it is a discrete symmetry made of two 
elements: identity and parity
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Symmetry restoration: Continuous symmetries

Particle number and angular momentum restoration involve continuous symmetries

And “linear combinations of rotated intrinsic states” become integrals

Linear combination       weight      rotated intrinsic state

This “simple” structure is due to the Abelian character of the underlying group U(1)

In the angular momentum case the symmetry group is SU(2) (not Abelian)

We assume axial symmetry and good signature in the intrinsic wave function.

Natural parity selection rule



  

AM contents of the intrinsic states

● |<PJ >|2 is the probability of finding 
angular momentum J in the intrinsic 
state

● The 3- configuration is dominant for 
negative parity states and spherical 
nuclei

● For deformed nuclei, the ordering of 
the negative parity states is similar to 
the one of positive parity states

● In the strong deformation limit of the 
octupole, both positive and negative 
parity amplitudes exactly follow the 
same pattern (alternating parity 
rotational bands)

3- octupole phonon

Alternating parity rot band



  

Configuration mixing

The last step is configuration mixing

This is a Projection After Variation (PAV) procedure because the intrinsic states 
are determined by solving the HFB equation

The f amplitudes are obtained by solving the  Schrodinger equation in the 
reduced configuration space (Hill-Wheeler equations for each J, π)

The final wf has good quantum numbers J, N , etc. This is very important as  
electromagnetic transition strengths and their associated selection rules strongly 
depend on them. To compute transition strengths we need the overlaps of the 
EM transition operators  

In the present approach, assumptions like the “rotational formula” often used 
to compute transition strengths are not required !

The “rotational formula” B(EL) α β
L

2 fails in weakly deformed nuclei and in 
computing transitions among different intrinsic states



  

144Ba

Gogny D1S calculation (one day in a 600 node computer farm)

R.N. Bernard, L.M. Robledo and T.R. Rodriguez
Octupole correlations in the nucleus 144Ba described with symmetry conserving configuration mixing calculations
Phys. Rev. C 93, 061302 (R) (2016)

Intrinsic energy Projected LAB energies



  

144Ba

Collective amplitudes:
● Follow the topology of the energy surface
● Symmetry restrictions (wf zero if π=-1 and β

3
=0)

● Fairly constant as a function of J (collective rotational band)
● Positive parity amplitudes evolve to match negative parity 

ones (stabilization of octupole deformation at high spins)



  

144Ba

● Weakly deformed nucleus (both quadrupole and 
octupole) with strong coupling

● Good agreement for the 1- excitation energy
● Wrong moments of inertia (understood: missing 

cranking-like states (*))
● Good transition strengths E2 and E3

Recent experimental data from B. Bucher et al PRL 116, 112503 (2016)

(*) PRC62, 054319; PLB746, 341



  

144Ba double octupole phonon

Additional collective 
states observed

● Oblate isomer

● Two octupole 
phonon multiplet



  

Other Ba isotopes
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Other Ba isotopes

Bucher et al (~48 Wu)

Too small moments 
of inertia

Enhanced 
octupolarity



  

Other Ba isotopes

● Larger quadrupole-octupole mixing in 142-144Ba
● Coll w.f. peaked at Q

30
 different from zero ! Not 

so well correlated with E
HFB

  topology: 
consequence of dynamical quantum 
correlations

Responsible for  enhanced 
B(E3) in N=90, 92, 94



  

Conclusions

● Our computational framework  reproduces quite nicely many of the experimental 
features of octupole deformed nuclei in the Ba region 

● Its microscopic foundation avoids uncontrolled assumptions of phenomenological 
models (vibrational or octupole deformed) as well as approximations (like the rotational 
formula for transition strengths)

● Its use of “global” EDFs like Gogny allows its use in other regions of the periodic table
(work in progress!)

● Computationally demanding but still within the reach of modest computational facitilites

● It can be extended to consider the coupling with other relevant degrees of freedom like 
pairing or single particle excitations (work in progress!)

ToDo

● Release axial symmetry assumption

● Release time reversal invariance assumption (cranking)

● Extend to odd mass nuclei



  

Collaborators 

This work is the result of a collaboration with

● Tomás Rodríguez (UAM)

● Remi Bernard 
(former postdoc@UAM, now at CEA)
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Second step beyond mean field: configuration mixing

Flat energy surfaces imply configuration mixing can lower the ground state energy

Generator Coordinate Method (GCM) ansatz

The amplitude                  has good parity under the exchange 

Parity projection recovered with 

Energies and amplitudes solution of the Hill-Wheeler equation

Collective wave functions

Transition strengths with the rotational approximation



  

Beyond mean field: Correlation energies

GS correlation energies
  
● HFB: Present in just a few nuclei and  around 1 MeV

● Parity projection: Present in all nuclei (except 
octupole deformed) ≈ 0.8 MeV
 

● GCM; Present in all nuclei ≈ 1.0 MeV

Almost all even-even nuclei have dynamic octupole 
correlation and their intrinsic ground state is octupole 
deformed

LMR, J. Phys. G: Nucl. Part. Phys. 42 (2015) 055109.



  

Octupoles at high spin

E. Garrote et al PRL 75, 2466



  

Odd-A and octupole deformation 

Unpaired nucleon expected to polarize the even-even core

 Gogny  D1S
 Uniform filling approximation
 Octupolarity changes level ordering

 Full blocking (time odd fields)
 Parity projection
 Octupole GCM

S. Perez, LMR PRC 78, 014304 Work in progress
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