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Introduction 

Ø  To get a better convergence description of the nuclei 
ü  far from the β-stability line;  
ü  with exotic excitation modes; 
one should investigate them in coordinate space or coordinate-equivalent 
space.  
 

Ø  In CDFT framework, the existing methods 
l  Runge-Kutta / Shooting method  Meng, NPA 635, 3 (1998) 

l  Dirac Woods-Saxon basis Zhou, Meng, and Ring, PRC 68, 034323 (2003); 
 Zhou, Meng, Ring, and Zhao, PRC 82, 011301 (2010)  

However, it’s difficult to extend these methods to 3D case.  
 

Ø  Imaginary time method (ITM) is a good choice for the calculation in 
coordinate space. Davies, Flocard, Krieger, and Weiss, NPA 342, 111 (1980).  

ü  with exotic shapes; 
ü  … 



Introduction 

Ø  ITM is a iteratively method for self-consistent mean field problem, and it 
has been applied to nonrelativistic mean field calculations in 3D 
coordinate space successfully. Bonche, Flocard, and Heenen, Comput. Phys. Comm. 171, 

49 (2005);      Maruhn, Reinhard, Stevenson, and Umar, Comput. Phys. Comm. 185, 2195 (2014).  

 

Ø  However, there are two challenges when one applies ITM to CDFT 
naively, 

l   Variational collapse; 
l   Fermion doubling (spurious solutions).   
 

Ø  To avoid these problems, Zhang, Liang and Meng applied the ITM to the 
Schr​ o  dinger-equivalent form of the Dirac equation, and developed a 
spherical RMF code based on this method. Zhang, Liang, and Meng, CPC 33, 113 

(2009);      Zhang, Liang, and Meng, IJMPE 19, 55 (2010). 



Introduction 

Ø  To avoid variational collapse, Hagino and Tanimura creatively proposed 

inverse Hamiltonian method (IHM); to avoid Fermion doubling problem, 

Tanimura, Hagino and Liang introduced high-order Wilson terms. Based 

on these two methods, they performed 3D lattice calculations for CDFT. 
Hagino and Tanimura, PRC 82, 057301 (2010);    Tanimura, Hagino, and Liang, PTEP 2015, 073D01 

(2015). 

Ø  However, there are some drawbacks when employing high-order Wilson 

terms,  
l  Correction for energies and wave functions. 
l  Introducing artificial violation of the rotational symmetry.  



Introduction 

p  In this work: 

Ø  To avoid variational collapse, we employ inverse Hamiltonian method. 

Ø  To avoid Fermion doubling problem, we perform the spatial derivatives of 
Dirac equation in momentum space with the help of discrete Fourier 
transform (spectral method). S. J. Shen, T. Tang, and L. L. Wang, Spectral methods : 

algorithms, analysis and applications (Springer, 2011). 

Ø  Combining these two methods, we propose a new method to solve Dirac 
equation in 3D lattice space. 
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Imaginary time method 

Ø  If Hamiltonian ℎ is independent on time, the evolution of  ​|𝜓↓0 ⟩  reads 

 

Ø  Basic idea of ITM is    𝑡→−i𝜏, and now the evolution of  ​|𝜓↓0 ⟩ becomes 

 
where 



Obviously, with𝜏→∞  , | ​𝜓↓    (𝜏)⟩will converge to ground state of Hamiltonian  
ℎ. Davies, Flocard, Krieger, and Weiss, NPA 342, 111 (1980). 

Ø  In practice, the imaginary time 𝜏  is cut into steps by 𝛥𝜏, and the evolution 
is carried out iteratively. Then, the evolution operator is expanded to the 
linear order of 𝛥𝜏.   



Inverse Hamiltonian method 

Ø  Because of the Dirac sea, a direct extension of ITM to Dirac equation will 
meet so-called variational collapse problem. Zhang, Liang, and Meng, CPC 33, 113 
(2009);      Zhang, Liang, and Meng, IJMPE 19, 55 (2010). 

Ø  To avoid similar problem in Ritz variational principle – maximizing ⟨1/ℎ⟩ 
instead of minimizing ⟨ℎ⟩ Hill and Krauthauser, PRL 72, 151(1994) 
 

 
 

 

 
Ø  Hagino and Tanimura combined this idea with ITM and proposed IHM. 

The evolution of wave functions reads |​𝜓↓    (𝜏)⟩= ​e  ↑​𝜏/ℎ−𝑊  |​𝜓↓0 ⟩, who will 
converge to the ground state in Fermi sea as 𝜏→∞ with a suitable 𝑊. Hagino 

and Tanimura, PRC 82, 057301 (2010);  
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Fermion doubling problem 

Ø  Solving Dirac equation in lattice space one may get spurious states with 

high momentum but low energy. Wilson1977Quarks and strings on a lattice 

Ø  1D free Dirac equation: 

its solutions have the following form 

 

Ø  Taking finite difference method,  

  

      one will get 
 
 

Ø  Dispersion relation   ​𝜀↑2 =​  𝑘↑2 + ​𝑚↑2  becomes Taken from Tanimura, Hagino, and Liang, 

PTEP 2015, 073D01 (2015). 



Ø  In momentum space, 1D free Dirac equation 

 

It gives exact dispersion relation:   ​𝜀↑2 =​𝑘↑2 +​𝑚↑2 , i.e. no Fermion doubling. 
Ø  In lattice space, spatial derivatives can be performed in momentum 

space with the help of discrete Fourier transform. In numerical physics,  
this method is so-called (Fourier) spectral method.  

Ø  Assuming ​  𝑓(𝑥↓𝜈 ) in momentum space is ​​𝑓   (𝑘↓𝑛 ), 𝑚-th derivative of​  𝑓(𝑥↓𝜈 )  

 
 
 
​   ​𝑓↓  ↑(𝑚) (𝑥↓𝜈 ) can be get from following procedure (FT: Fourier transform),  

Spectral method 
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Ø  Potential of Dirac equation 
 
 
 
 
 
 
with 

Ø  The box sizes and step sizes for three direction are identical, denoted as 

𝐿 and 𝑑  respectively. In calculations, 𝐿=23 fm and 𝑑=1 fm if not specified.   

Ø  Imaginary time step size: 𝛥𝜏=100 MeV.  

Ø  The inverse Hamiltonian is calculated by conjugate residual method. S. 

Yousef, Iterative methods for sparse linear systems, (Siam, 2003) 

Numerical details 

​𝑉↓𝟎 
[MeV] 

​𝑅↓𝟎 [fm] ​𝑎↓   [𝐟𝐦] λ ​𝑅↓𝑙𝑠 
[𝐟𝐦] 

​𝑎↓𝑙𝑠 
[𝐟𝐦] 

−65.796  4.482 0.615 11.118 4.159 0.648 



To get a faster convergence, we suggest two procedures: 

l  Changing 𝑾: 

where ∆​𝑊↓1 =6  MeV, and for 𝑖>1 

l  Diagonalizing Hamiltonian within the space of the evelution wave 

functions every 10 iterations, the eigen functions are taken as initial 

wave functions for the next iteration.  

 

Numerical Details 



Iteration times 

Ø  Taking spherical potential as an example, we count the  required  iteration 
times for the convergence of all bound states.  

Ø  The convergence in the following calculations is defined as the energy 
dispersions  

 
for all bound states are smaller than ​10↑−4  MeV.   
 

Ø  The required iteration times:  
     (1) Normal choice: >130,000 
     (2) Changing 𝑊  only:  27,184 
     (3) Diagonalizing Hamiltonian only: 232 
     (4) Changing 𝑊 and diagonalizing Hamiltonian: 39 
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Spherical single particle levels 

Ø  For clarity, only one energy level of the degenerate ones is shown. 

Ø  After 39-th iteration, all the energy dispersions of bound sates are 

smaller than ​10↑−4  MeV .  



Energy accuracy 

Ø  Fig. (a) and Fig. (b):

l     ​  𝐿↓𝑎 ​≈𝐿↓𝑏 ≈23 fm 
l   ​𝑑↓𝑎 =1.0 fm,   ​𝑑↓𝑏 =0.8 fm 

Except weak bound 2 ​ p↓3/2   and   2​
p↓1/2   orbitals, the deviations are 
smaller than ​10↑−4  MeV.  
 

Ø  Fig. (b) and Fig. (c):

l     ​  𝐿↓𝑏 =23.2 fm, ​  𝐿↓𝑐 =31.2 fm 
l   ​𝑑↓𝑏 = ​𝑑↓𝑐 =0.8 fm 

the deviations of 2 ​p↓3/2   and  2​p↓1/2  
orbitals drop obviously, whereas the 
others are almost unchanged.  



Density distribution 

Ø  The distribution of total density of six states of 1​d↓5/2  orbit is spherical.  



Ø  In 3D lattice calculations, radial 
(vector) densities are obtained by 
following equation 

Ø  The radial densities obtained by 
shooting method and 3D lattice 
calculations are almost identical.  

 

Radial density distribution  



Deformed single particle levels 
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Ø  In this work, Dirac equation is solved in 3D lattice by imaginary time 
method. The variational collapse is avoided by invers Hamiltonian 
method; Fermion doubling problem is avoided by spectral method, i.e. 
performing spatial derivatives in momentum space by discrete Fourier 
transform.   

 
Ø  Then, the new method is used to solve Dirac equations with spherical, 

quadrapole, octupole potential efficiently.  

Summary and perspectives 

p  Summary 

p  Perspectives 
Ø  This method could be combined with CDFT:  

l  3D CDFT (finished);  

l  3D Cranking CDFT (in progress); 

l  3D Time-dependent CDFT (in progress).  





Ø  Conjugate Residual Algorithm for linear equation 𝑨𝒙=𝒃:   

Conjugate Residual Algorithm 



Functional PC-PK1: spherical nuclei 

3D Lattice 
(n=24, d= 0.8 fm) 

Spherical Code 
(R=20 fm, dr=0.1fm) 

Axial def. Code  
(Nf=18) 

Binding Energy [MeV] 127.285 127.286 127.230 
Charge Radius ​𝒓↓𝒄  
[fm] 

2.767 2.768 2.768 

​𝒓↓𝒏 ​−𝒓↓𝒑  [fm] −0.023 −0.024 −0.024 

3D Lattice 
(n=30, d= 1 fm) 

Spherical Code 
(R=20 fm, dr=0.1fm) 

Axial def. Code  
(Nf=18) 

Binding Energy [MeV] 1637.941 1637.915 1637.780 
Charge Radius ​𝒓↓𝒄  
[fm] 

5.518 5.518 5.517 

​𝒓↓𝒏 ​−𝒓↓𝒑  [fm] 0.257 0.257 0.257 

Nucleus:​  ↑𝟏𝟔 O 

Nucleus:​  ↑𝟐𝟎𝟖 Pb 



Functional PC-PK1: deformed nuclei 

3D Lattice  
(n=24, d=0.8fm) 

Axial def. Code  
 (nf=18) 

Binding Energy [MeV] 155.552 155.509 
Charge Radius ​𝒓↓𝒄  
[fm] 

 3.007 3.006 

​𝒓↓𝒏 ​−𝒓↓𝒑  [fm] −0.030 −0.029 
  𝜷 0.541 0.541 
​𝜷↓𝟒𝟎  0.494 0.491 

Nucleus:​  ↑𝟐𝟎 Ne 



3D Lattice 
(n=24, d=0.8 fm) 

Lalazissis et al PRC71, 
024312 (2005) 

Absolute 
deviation 

Binding Energy [MeV] 127.809 127.801 0.008 
Charge Radius ​𝒓↓𝒄  
[fm] 

2.729 2.727 0.002 

​𝒓↓𝒏 ​−𝒓↓𝒑  [fm] -0.03 -0.03  0.00 

Nucleus:​  ↑𝟏𝟔 O 

Nucleus:​  ↑𝟐𝟎𝟖 Pb 
3D Lattice 

(n=30, d=1 fm) 
Lalazissis et al PRC71, 

024312 (2005) 
Absolute de 

viation 
Binding Energy [MeV] 1638.483 1638.426 0.057 
Charge Radius ​𝒓↓𝒄  
[fm] 

 5.519 5.518 0.001 

​𝒓↓𝒏 ​−𝒓↓𝒑  [fm] 0.19 0.19 0.00 

Functional DD-ME2: spherical nuclei 


