PACS-CS Project and
 HPCI Strategic Field Program

CCS at U. Tsukuba / RIKEN AICS

Yoshinobu Kuramashi

Plan of talk

§1. PACS-CS Project
§2. Construction of Nuclei
§3. Algorithmic Improvements
§4. HPCI Strategic Field Program
§5. Summary

§1. PACS-CS Project

Machine	2008	2009	2010	2011	2012	2013	2014
PACS-CS (PC-cluster, 14TF)	Jul. 20			$-\lambda$			
T2K-Tsukuba (PC-cluster, 95TF)	$<$					eb. 201	
HA-PACS (GPU-cluster, 0.8PF)						364TF fall	TCA $\text { f } 2013$
COMA (MIC-cluster, 1PF) Photo is not yet available							$\underset{\sim}{\text { pr. } 2014}$

Collaboration members

Physicists:
S.Aoki, N.Ishizuka, D.Kadoh(\rightarrow KEK), K.Kanaya, Tsukuba

Tsukuba
Y.Kuramashi, Y.Nakamura \rightarrow AICS), Y.Namekawa,Y.Taniguchi, N.Ukita, A.Ukawa, T.Yamazaki(\rightarrow Nagoya),T.Yoshie
K.-I. Ishikawa, M.Okawa Hiroshima

K.-I. Ishikawa, M.Okawa

Hiroshima
T.Izubuchi BNL
Computer scientists:
T.Boku, M.Sato, D.Takahashi, Otatebe Tsukuba
Y.Taniguchi, N.Ukita, A.Ukawa, T.Yamazaki(\rightarrow Nagoya), T.Yoshie
T.Sakurai, H.Tadano

Science Target

2+1 flavor QCD simulation at the physical point

	PACS-CS	CP-PACS/JLQCD
Gauge action	Iwasaki	lwasaki
Quark action	clover with NP $c_{s w}$	clover with NP csw
Lattice spacing a[fm]	$\lesssim 0.1$	$0.07,0.1,0.122$
Physical volume	$\succsim(3 \mathrm{fm}) 3$	$\sim(2 \mathrm{fm}) 3$
$\mathrm{~m}_{\mathrm{ud}}$	physical point	$64 \mathrm{MeV}\left(\mathrm{m}_{\pi} \approx 700 \mathrm{MeV}\right)$
Algorithm for ud	DDHMC with some improvements	HMC
Algorithm for s	UV-filtered exact PHMC	exact PHMC

Why physical point simulation?

In my slide @ CERN TH Institute 2010

- Difficult to trace chiral logs for chiral extrapolation
- ChPT is not always a good guiding principle
- Direct treatment of resonances based on phase shift
- Simulations with different up and down quark masses

Chiral Behavior

Expected curvature from ChPT \Rightarrow Determination of LECs of SU(2) ChPT

Hadron masses in 2+1 Flavor QCD

consistent within 2~3\% error bars

What's Next?

Science target for post PACS-CS (T2K \& K computer)

- $1+1+1\left(\mathrm{~m}_{\mathrm{u}} \neq \mathrm{m}_{\mathrm{d}} \neq \mathrm{m}_{\mathrm{s}}\right)$ flavor QCD+QED simulation
- EM interactions
- u-d quark mass defference

Multi-physics toward precision measurement

$\mathrm{K}^{0}(\mathrm{~d} \overline{\mathrm{~s}})$	-	
497.6 MeV		1%
$\mathrm{~K}^{+}(\overline{\mathrm{s}})$		
493.7 MeV		

- Hadron-Hadron interactions
- Resonances ($\rho \rightarrow \pi$ decay etc.)
- Nuclei based on QCD

1＋1＋1 flavor QCD＋QED

PACS－CS 12

Isospin symmetry breaking
－EM interaction

$$
Q_{u}=+2 / 3 e, Q_{d}=Q_{s}=-1 / 3 e, e=\sqrt{ } 4 \pi / 137
$$

－u－d quark mass difference

$$
\mathrm{m}_{\mathrm{u}}=\mathrm{m}_{\mathrm{d}} \neq \mathrm{m}_{\mathrm{s}}(2+1 \text { フレーバー }) \Rightarrow \mathrm{m}_{\mathrm{u}} \neq \mathrm{m}_{\mathrm{d}} \neq \mathrm{m}_{\mathrm{s}}(1+1+1 \text { フレーバー })
$$

Physical input：

$$
\mathrm{m}_{\mathrm{T}^{+}}(\mathrm{ud}), \mathrm{m}_{\mathrm{K} 0}(\mathrm{ds}), \mathrm{m}_{\mathrm{K}_{+}}(\mathrm{us}), \mathrm{m}_{\Omega_{-}}(\mathrm{sss})
$$

Output：

$$
\mathrm{m}_{\mathrm{u}}, \mathrm{~m}_{\mathrm{d}}, \mathrm{~m}_{\mathrm{s}}, \text { lattice spacing, } \ldots
$$

reweighting

$\mathrm{K}^{0}-\mathrm{K}^{+}$mass difference

lattice size $=32^{3} \times 64$, $\mathrm{a} \sim 0.1 \mathrm{fm}$
EM interaction + u-d quark mass diff. \Rightarrow diff. of $\mathrm{m}_{\mathrm{K} 0}(\mathrm{ds})$ and $\mathrm{m}_{\mathrm{K}+}(\mathrm{us})$

$\mathrm{K}^{0}(\mathrm{~d} \overline{\mathrm{~s}})$	-
497.6 MeV	
$\mathrm{K}+(\overline{\mathrm{s}})$	
$493.7 \mathrm{MeV}^{-}$	

$$
\frac{\left\langle K^{0}(t) K^{0}(0)\right\rangle}{\left\langle K^{+}(t) K^{+}(0)\right\rangle} \simeq Z(1-\underbrace{\left.\left(m_{K^{0}}-m_{K^{+}}\right) t\right)}_{\text {much smaller than } 1}
$$

Slope is consistent with exp. value $3.937(28) \mathrm{MeV}$ within error bars

Physical input:

$$
\begin{array}{ll}
\mathrm{m}_{\pi+}(\mathrm{ud})=139.7(15.5)[\mathrm{MeV}] & \text { exp: } 139.6[\mathrm{MeV}] \\
\mathrm{m}_{\mathrm{K}(}(\mathrm{ds})=497.6(8.1)[\mathrm{MeV}] & \text { exp: } 497.6[\mathrm{MeV}] \\
\mathrm{m}_{\mathrm{K}+}(\text { us })=492.4(8.1)[\mathrm{MeV}] & \text { exp: } 493.7[\mathrm{MeV}] \\
\mathrm{m}_{\Omega}(\mathrm{sss}) \text { is fixed at exp. value } & \text { exp: } 1672.5[\mathrm{MeV}]
\end{array}
$$

Quark masses (MSbar scheme at $\mu=2 \mathrm{GeV}$):
$\mathrm{m}_{\mathrm{u}}=2.57(26)(07)[\mathrm{MeV}]$
$\mathrm{m}_{\mathrm{d}}=3.68(29)(10)[\mathrm{MeV}]$
$\mathrm{m}_{\mathrm{s}}=83.60(58)(2.23)[\mathrm{MeV}]$

Sizable finite size effects are expected in QCD+QED simulation

 π meson mass(140MeV)@QCD \Leftrightarrow photon(massless)@QED\Rightarrow Simulation with much larger lattice size on K computer Also useful for calculation of light nuclei and nuclear force

§2. Construction of Nuclei

We are now achieving a precision measurement of hadron masses Next step is a challenge for multi-scale physics

Exploratory study for ${ }^{4} \mathrm{He}$ and ${ }^{3} \mathrm{He}$ nuclei
Yamazaki-YK-Ukawa 10,12

$$
\left\langle\mathcal{O}_{4} \mathrm{He}(t) \mathcal{O}_{4_{\mathrm{He}}}^{\dagger}(0)\right\rangle \stackrel{t \gtrsim>0}{\sim} C \exp \left(-m_{4} \mathrm{He} t\right)
$$

${ }^{4} \mathrm{He}: 2$ proton +2 neutron $\Rightarrow 12$ quark propagators
${ }^{3} \mathrm{He}: 2$ proton +1 neutron $\Rightarrow 9$ quark propagators

Exploratory Study in Quenched QCD

$m_{\pi}=0.8 \mathrm{GeV}, m_{N}=1.6 \mathrm{GeV}$ in quenched QCD (Real world: $\mathrm{m}_{\mathrm{N}}=0.94 \mathrm{GeV}$)

First successful construction of helium nuclei
$\Rightarrow 2+1$ flavor QCD with lighter quark masses

He Nuclei in 2+1 Flavor QCD

Yamazaki-YK-Ukawa 12
$2+1$ flavor QCD, $m_{\pi}=0.5 \mathrm{GeV}(0.14 \mathrm{GeV}$ in nature $), \mathrm{m}_{\mathrm{N}}=1.32 \mathrm{GeV}$

$$
\Delta E_{4_{\mathrm{He}}}=m_{4_{\mathrm{He}}}-4 m_{N}
$$

ΔE remains finite in the infinite volume limit
Successful construction of helium nuclei in 2+1 flavor QCD

NN Systems in 2+1 Flavor QCD

Yamazaki-YK-Ukawa 12
Results obtained in parallel with He calculation on the same configs

Current Summary for NN Systems

Both ${ }^{3} \mathrm{~S}_{1}$ and ${ }^{1} \mathrm{~S}_{0}$ channels are bound at heavy quark region

$\left|\Delta E\left({ }^{3} S_{1}\right)\right|>\left|\Delta E\left({ }^{1} S_{0}\right)\right|$ is suggestive Important to check quark mass dependence

Target on K computer: construction of nuclei at the physical point

§3. Algorithmic Improvements

Trend of architecture

- PC cluster, multi-core, GPU, ...
- hierarchical parallel structure
- diminishing B/F

Algorithmic improvements following the architecture trend

- Key points:
- use of mixed precision
- reduction of communication

Mixed precision nested BiCGStab Modified blocked BiCGStab Domain-Decomposed HMC(DDHMC)

Developed on PACS-CS and T2K-Tsukuba

Solver Improvement

Bottle neck for iterative solver of linear eqs.
memory bandwidth
Byte/Flop ≈ 2.1 in MatVec Dx

Advantage in 32bit arithmetic is effective use of

- memory and network bandwidth
- cache size

Maximum use of 32bit arithmetic with the solution kept in 64bit

```
1: \(x\) :initial guess
2: \(r=b-D x\)
3: convert \(r_{32}:=r\)
4: solve \(\delta x_{32}=D^{-1} r_{32}\)
5: convert \(\delta x:=\delta x_{32}\)
6: \(r=r-D \delta x\)
7: \(x=x+\delta x\)
(64bit)
(64bit)
(64bit \(\rightarrow 32\) bit)
(32bit)
(32bit \(\rightarrow\) 64bit)
(64bit)
iterative refinement
8: if \(|r|\) is small end else goto 3
```


Mixed Precision Nested BiCGStab

	Based on $D M y=b, x=M y$
1: $x:$ initial guess, $M \approx D^{-1}: 32$ bit-preconditioner	
2: $r=b-D x, \tilde{r}=r, \rho_{0}=\|r\|^{2}, p=r$	
3: loop	
4: $\nu=M p, q=D \nu, \alpha=\rho_{0} /\langle\tilde{r} \mid q\rangle$	
5: $r=r-\alpha q, x=x+\alpha \nu$, if $\|r\|$ is small exit	
$6: \nu=M r, t=D \nu, \omega=\langle t \mid r\rangle /\langle t \mid t\rangle$	
$7: r=r-\omega t, x=x+\omega \nu$, if $\|r\|$ is small exit	
$8: \rho_{1}=\langle\tilde{r} \mid r\rangle, \beta=(\alpha / \omega)\left(\rho_{1} / \rho_{0}\right), \rho_{0}=\rho_{1}$	
$9: p=r+\beta(p-\omega q)$	
$10:$ end loop	

Inner/outer-solver residual history (test on $\mathrm{Kud}=0.13770, \mathrm{Ks}=0.13640$)

- Converged after 1.5 outer iteration
- Almost all the computational cost is spent by 32bit arithmetic
- Time is reduced by a factor 2 on PACS-CS (though, iteration number is slightly increased)

Modified Block BiCGStab (1)

A solver algorithm for linear eqs with multiple right-hand sides $D x^{(i)}=b^{(i)}(i=1, \ldots, L) \Rightarrow D X=B$

Nakamura et al. 12

```
1 initial guess }X\in\mp@subsup{\mathbb{C}}{}{N\timesL
2R=B-AX
3P=R
4 choose \tilde{R}\in\mp@subsup{\mathbb{C}}{}{N\timesL}
while max }\mp@subsup{\operatorname{ma}}{i}{}(\mp@subsup{\boldsymbol{r}}{}{(i)}|/|\mp@subsup{\boldsymbol{b}}{}{(i)}|)\leqslant
    4.1 QR decomposition P}=Q\gamma,P\leftarrow
        4.2 U = MP
        4.3 V =AU
        4.4 solve(\tilde{R}}\mp@subsup{}{}{H}V)\alpha=\mp@subsup{\tilde{R}}{}{H}R\mathrm{ for }
        4.5 T=R-V\alpha
do
        4.6 S = MT
        4.7 Z = AS
        4.8 \zeta = Tr (Z #
        4.9 X\leftarrowX+U\alpha+\zetaS
        4.10 R=T-\zetaZ
        4 . 1 1 ~ s o l v e ( ~ ( \tilde { R }
        4.12 P}\leftarrowR+(P-\zetaV)
5 return (X)
```

2+1 flavor QCD, $32^{3} \times 64$, a~0.1fm,
$\left(K_{u d}, K_{s}\right)=(0.137785,0.13660)$, point source

Basic idea: blocked version searches the solution vectors with the enlarged Krylov subspace

Modified Block BiCGStab (2)

Performance test on T2K-Tsukuba using 10 configs $D x^{(i)}=b^{(i)}(i=1, \ldots, 12)$

$L \times 12 / L$	Time [s]	T (gain)	NMVM
1×12	$3827(755)$	1	$17146(3326)$
2×6	$2066(224)$	1.9	$12942(1379)$
3×4	$1619(129)$	2.4	$10652(832)$
4×3	$1145(99)$	3.3	$9343(835)$
6×2	$1040(87)$	3.7	$7888(663)$
12×1	$705(70)$	5.4	1.6

T (gain) > NM(gain) is thanks to effective use of cache

Domain-Decomposed Hybrid Monte Carlo (DDHMC)
4-dim. lattice is decomposed into small blocks
\Rightarrow introduction of hierarchy

$$
\begin{aligned}
\frac{d}{d \tau} P_{\mu}(n, \tau) & =-\frac{\delta \mathcal{H}_{\mathrm{HMC}}}{\delta U_{\mu}(n, \tau)} \\
& =F_{\mu}^{\mathrm{UV}}(n, \tau)+F_{\mu}^{\mathrm{IR}}(n, \tau)+\cdots \\
& \begin{array}{ll}
\text { domain } & \text { full lattice } \\
& \text { (single core) } \quad \text { (many nodes) }
\end{array}
\end{aligned}
$$

$\mathrm{F}_{\mu}{ }^{\mathrm{UV}}: \quad x=\left(D_{\mathrm{UV}}\left[U_{\mu}\right]\right)^{-1} b$ within domain
\Rightarrow small condition number w/o communication
$\mathrm{F}_{\mu}{ }^{\mathbb{R}}: \quad x=\left(D_{\mathrm{IR}}\left[U_{\mu}\right]\right)^{-1} b$ on full lattice
\Rightarrow large condition number w/ communication

Multiple Time Step MD Integrator

Sexton-Weingarten 92
Adjust step size according to the magnitude of force

$$
\delta \tau^{\mathrm{UV}}\left\|F_{\mu}^{\mathrm{UV}}\right\| \approx \delta \tau^{\mathrm{IR}}\left\|F_{\mu}^{\mathrm{IR}}\right\|
$$

For example

$$
\begin{aligned}
& \left\|F_{\mu}^{\mathrm{UV}}\right\|:\left\|F_{\mu}^{\mathrm{IR}}\right\|=4: 1 \Rightarrow \delta \tau^{\mathrm{UV}}: \delta \tau^{\mathrm{IR}}=1: 4
\end{aligned}
$$

Less frequent calculation of $F_{\mu}{ }^{\mathbb{R}} \Rightarrow$ save computational cost

Cost Reduction due to DDHMC

\Rightarrow Physical point simulation is possible on PACS-CS and T2K-Tsukuba

§4. HPCI Strategic Field Program

Scientific target

- 2+1 flavor QCD $\Rightarrow 1+1+1$ flavor QCD+QED
- Various physical quantities
- Investigation of resonances
- Direct construction of light nuclei
- Determination of baryon-baryon potentials

Both ${ }^{3} \mathrm{~S}_{1}$ and ${ }^{1} \mathrm{~S}_{0}$ channels are bound at heavy quark region

$\left|\Delta E\left({ }^{3} S_{1}\right)\right|>\left|\Delta E\left({ }^{1} S_{0}\right)\right|$ is suggestive
Important to check quark mass dependence

Target on K computer: construction of nuclei at the physical point

Baryon-Baryon Potentials

$2+1$ flavor QCD, lattice size $=32^{3} \times 64, m_{\pi}=0.70,0.57,0.41 \mathrm{GeV}$

Quark mass dependence

$\delta(150)$

Attractive phase shift, though the magnitude is just 10\% of exp. Value No bound state (He, NN) \Leftrightarrow inconsistency against the direct method Phase shift becomes smaller, as quark mass decreases
\Rightarrow need direct comparison with exp. values at the physical point

Collaboration members

N.Ishii, N.Ishizuka, Y.Kuramashi, Y.Namekawa, TsukubaH.Nemura, K.Sasaki, Y.Taniguchi, N.UkitaT.Hatsuda, T.DoiRIKEN-Wako
T.Yamazaki NagoyaS.AokiKyoto
Y.Nakamura RIKEN-AICS
K.-I.Ishikawa
HAL QCD Collab. joins to determine baryon-baryon potential

Simulation Parameters

- 2+1 flavor QCD
- Wilson-clover quark action + Iwasaki gauge action
- Stout smearing with $\alpha=0.1$ and $N_{\text {smear }}=6$
- $\mathrm{NP} \mathrm{C}_{\mathrm{sw}}=1.11$ determined by SF
- $\beta=1.82 \Rightarrow \mathrm{a} \sim 0.1 \mathrm{fm}$
- Lattice size $=96^{4} \Rightarrow(\sim 9 f m)^{4}$
- Hopping parameters: $\left(\mathrm{K}_{\mathrm{ud}}, \mathrm{K}_{\mathrm{s}}\right)=(0.126117,0.124790)$
- Simulation algorithm
- (HB)²DDHMC w/ active link for ud quarks, UVPHMC for s quark
- Block size $=12^{4} \Rightarrow(\sim 1 \mathrm{fm})^{4}$
- HB parameters: $\left(\rho_{1}, \rho_{2}\right)=(0.99975,0.9940)$
- Multi-time scale integrator: $\left(\mathrm{N}_{1}, \mathrm{~N}_{2}, \mathrm{~N}_{3}, \mathrm{~N}_{4}, \mathrm{~N}_{5}\right)=(15,2,2,2,8)$
- trajectory length: $\mathrm{T}=1$
- $\mathrm{N}_{\text {poly }}=310$
- Chronological inverter guess: $\mathrm{N}_{\text {chrono }}=16$
- Solver: mixed precision nested BiCGStab

Non-Perturbative Determination of $\mathrm{C}_{\mathrm{Sw}}(1)$

Taniguchi @Lattice2012
Schördinger functional method
$-L^{3} \times T=8^{3} \times 16\left(L^{3} \times T=12^{3} \times 24\right.$ for volume dependence check)

- Choose β such that the lattice spacing becomes around 0.1 fm

Performance on K computer

- Kernel (MatVec) performance: >50\%
- Solver performance: $\sim 26 \%$ (mixed precision nested BiCGStab)
- Weak scaling test
$-6^{3} \times 12 /$ node fixed
-16 nodes $\left(\mathrm{V}=12^{3} \times 24\right) \Rightarrow 12288$ nodes $\left(\mathrm{V}=48 \times 72 \times 96^{2}\right)$

\#node	scalability
$16 \Rightarrow 256$	98%
$256 \Rightarrow 2048$	98%
$2048 \Rightarrow 12288$	96%

Current Status (As of Lattice 2013)

Hadron spectrum in comparison with experiment (normalized by m_{Ω})

Further tuning to the physical point is planned with reweighting method Clear deviation is already observed for unstable particles (ρ, K^{*})

ρ Meson Effective Mass

Decay channel is open: $m_{\rho}>2 \sqrt{ }\left\{m_{\pi}{ }^{2}+(\pi / 48)^{2}\right\}$

It looks hard to find a reasonable plateau
Analysis of 2×2 correlation matrix $(\rho, \pi \pi)$ is necessary

Summary

Historical role of PACS-CS/T2K-Tsukuba

- Achievement of physical point simulation
- Beginning of precision measurement with EM and u-d quark mass difference
- One-body study of hadron \Rightarrow Hadron-hadron interaction including Nuclei

Peak	Machine	Scientific Target
$<$ 1TF class	CP-PACS	Development of 2+1 flavor QCD simulation
10TFclass	PACS-CS	Physical point simulation
100TFclass	T2K- Tsukuba	Development of 1+1+1flavor QCD+QED simulation Construction of Nuclei with heavy m mu
1PF class 10PF class	HA-PACS K computer	Large scale simulation of 1+1+1 flavor QCD+QED Construction of Nuclei at the physical point

