

Activities and Collaborations of Division of Particle Physics

CCS at U. Tsukuba / RIKEN AICS

Yoshinobu Kuramashi

Plan of Talk

- Members
- Machines in CCS
- Introduction to Lattice QCD
- Hadron Mass Calculation
- Two Approaches for Nuclei in Lattice QCD
- Other Primary Research Subjects
- Collaborations
- Future Plan
- Summary

Members

- Yoshinobu Kuramashi [P], Leader
- Naruhito Ishizuka [AP]
- Tomoteru Yoshié 【AP】
- Noriyoshi Ishii [AP]
- Hidekatsu Nemura [AP]
- Yusuke Taniguchi [L]
- + 3 postdocs
- Sinya Aoki [Visiting Professor]
- Kazuyuki Kanaya [P(Collaborative Fellow)]

Machines in CCS

What is Elementary Particle Physics?

Questions in history of mankind

- What is the smallest component of matter?
- What is the most fundamental interaction?

Elementary Particle Known to Date

Fundamental Interactions

force relative strength gauge boson quantum theory

Strong	1	Gluon	QCD	
EM	0.01	Photon	QED	
Weak	0.00001	Weak Boson	Weinberg-Salam	
Gravity	10 ⁻⁴⁰	Graviton	Superstring(?)	

What is strong interaction?

Strong Interaction

Lattice QCD

QCD Lagrangian = first principle

$$\mathcal{L} = \frac{1}{4} F_{\mu\nu} F_{\mu\nu} + \sum_{q=u,d,s,c,b,t} \bar{q} \left[\gamma_{\mu} (\partial_{\mu} - igA_{\mu}) + m_{q} \right] q$$

Only coupling const. g and quark masses m_a are free parameters

Too strong to investigate with perturbative analysis

⇒ nonperturbative analysis with numerical method based on first pringiple

Numerical Method

Path integral on discretized 4D (3D-space + 1D-time) lattice

$$\langle \mathcal{O}[A_{\mu}, q, \bar{q}] \rangle = \frac{1}{Z} \int \mathcal{D}A_{\mu} \mathcal{D}q \mathcal{D}\bar{q} \ \mathcal{O}[A_{\mu}, q, \bar{q}] \ \exp\left\{-\int d^4x \mathcal{L}[A_{\mu}, q, \bar{q}]\right\}$$

Similar to partition function in stat. mechanics \Rightarrow Monte Carlo method

Average over configs. gives expectation value

o quark ▲ gluon

$$\left\langle \mathcal{O}[A_{\mu}, q, \bar{q}] \right\rangle = \frac{1}{N} \sum_{i=1}^{N} \mathcal{O}[A_{\mu}^{(i)}, q^{(i)}, \bar{q}^{(i)}] + O\left(\frac{1}{\sqrt{N}}\right)$$

Statistical error

Physical Parameters

Small number of parameters

- 4D volume: V=NX•NY•NZ•NT
- lattice spacing: a (function of g)
- quark mass: m_u,m_d,m_s,...

Major Systematic Errors

- Finite volume effects
 - ⇒ Enlarge V=NX•NY•NZ•NT
- Finite lattice spacing effects
 - \Rightarrow smaller a
- Quenched approximation (Partial inclusion of weight exp(-∫d⁴xL_{QCD}))
 ⇒ 2+1 (m_u=m_d≠m_s) flavor QCD simulation CP-PACS/JLQCD project 00~05
- Chiral extrapolation with artificially heavier m_{ud} quark masses (※ Computational cost becomes cheaper for heavier m_{ud})
 - ⇒ Physical point simulation PACS-CS project 06~

One may think of ...

Chiral extrapolation with artificially heavier m_{ud} quark masses should be a good idea, because computational cost is much cheaper

Quark Mass dependence

PACS-CS 09

Non-trivial curvature toward physical point ⇒ Physical point simulation is necessary

Various Hadrons

Confinement : quark can never be retrieved by itself

Hadron Mass Calculation

Fundamental quantities both in physical and technical senses

Physical side

Technical side

Hadron correlators in terms of quark fields

 $\left\langle \mathcal{O}_{h}(t)\mathcal{O}_{h}^{\dagger}(0)\right\rangle \overset{t\gg0}{\sim} C\exp\left(-m_{h}t\right) \Rightarrow \operatorname{Extract} \operatorname{m_{h}} \operatorname{by} \operatorname{fit}$

Quark line diagrams from Wick contractions

Hadron Masses in 2+1 Flavor QCD

PACS-CS 09

input $m_{\pi}, m_{K}, m_{\Omega} \Rightarrow m_{u}=m_{d}, m_{s}, a$

Consistent within $2 \sim 3\%$ error bars

What's Next?

- 1+1+1 ($m_u \neq m_d \neq m_s$) flavor QCD+QED simulation at physical point
 - Electromagnetic (EM) interactions
 - u-d quark mass defferenceK°(ds) —
497.6MeV1%Multi-physics toward precision measurementK⁺(us)
- Hadron-Hadron interactions

493.7MeV

1+1+1 Flavor QCD+QED

PACS-CS 12

Isospin symmetry breaking

EM interaction

u-d quark mass difference

 $m_u = m_d \neq m_s \text{ (2+1 flavor)} \Rightarrow m_u \neq m_d \neq m_s \text{ (1+1+1 flavor)}$

u, d, s Quark Masses

PACS-CS 12

Physical input: $m_{\pi^+}(ud)=139.7(15.5) [MeV]$ $m_{K0}(ds)=497.6(8.1) [MeV]$ $m_{K^+}(us)=492.4(8.1) [MeV]$ $m_{\Omega}(sss)$ is fixed at exp. value

exp: 139.6 [MeV] exp: 497.6 [MeV] exp: 493.7 [MeV] exp: 1672.5 [MeV]

Quark masses (MSbar scheme at μ =2 GeV): m_u =2.57(26)(07) [MeV] m_d =3.68(29)(10) [MeV] m_s =83.60(58)(2.23) [MeV]

1+1+1 flavor QCD+QED allows individual determination of m_u,m_d,m_s

Two Approaches for Nuclei in Lattice QCD

 Direct construction of nuclei
 Fukugita et al. 95
 Measure correlation of nucleus operators ⇔ same as hadron masses ex. ⁴He case

 $\langle \mathcal{O}_{4_{\text{He}}}(t) \mathcal{O}_{4_{\text{He}}}^{\dagger}(0) \rangle \stackrel{t \gg 0}{\sim} C \exp\left(-m_{4_{\text{He}}}t\right) \qquad \Delta E_{4_{\text{He}}} = m_{4_{\text{He}}} - 4m_N$ binding energy

Potential approach

Ishii-Aoki-Hatsuda 07

Measure wave-function of two nucleons $\Phi(r) \Rightarrow$ extract potential V_C(r)

$$V_C(r) = E + \frac{1}{2\mu} \frac{\vec{\nabla}^2 \phi(r)}{\phi(r)}$$

Solve Schrödinger eq. with $V_C(r)$ as input

Direct Construction of A≤4 Nuclei

Yamazaki-YK-Ukawa 12

2+1 flavor QCD, m_{π} =0.5 GeV (0.14 GeV in nature), m_N =1.32 GeV

	⁴He	³ He	NN(³ S ¹)	NN(¹ S ₀)
Binding energy [MeV]	43(12)(8)	20.3(4.0)(2.0)	11.5(1.1)(0.6)	7.4(1.3)(0.6)
Exp. value [MeV]	28.3	7.72	2.22	0

- Successful construction of light nuclei (⁴He, ³He, NN(3S1))
- Larger binding energies than exp. values

Heavy quark effects?

¹S₀ channel is also bound

Physical point simulation is necessary

NN Potential

HAL QCD@Lattice 2013

2+1 flavor QCD, m_{π} =0.70, 0.57, 0.41 GeV (0.14 GeV in nature)

Attractive phase shift, though the magnitude is just 10% of exp. value No bound state (He, NN) \Leftrightarrow inconsistency against the direct method Phase shift becomes smaller, as quark mass decreases \Rightarrow reproduce exp. values at the physical point ?

Other Primary Research Subjects

Details of research results will be explained in parallel track on Wed.

- Dynamical properties of hadrons such as $\rho{\rightarrow}\pi\pi$ resonance
 - World's first study of $\rho{\rightarrow}\pi\pi$ decay width based on phase shift in 2007
 - Extended from 2 flavor to 2+1 flavor QCD at m_{π} =0.30, 0.41 GeV
- Nonperturbative renormalization with a finite volume technique
 - Running coupling constant and quark masses in 2+1 flavor QCD
- Lattice QCD at finite temperature and density
 - Phase structure
 - Thermodynamic properties
 - Use of Wilson-type quarks

Expected phase diagram

Collaborations

- Collaboration with applied mathematicians and computer scientists in Division of High performance Computing Systems
 - mixed precision nested BiCGStab algorithm for PACS-CS machine

 \Rightarrow Double the performance

- block Krylov subspace algorithms with multiple right-hand sides
 - ⇒ Make 1+1+1 flavor QCD+QED simulation possible
- International/Japan Lattice Data Grid (ILDG/JLDG)
 - ⇒ Overview by Yoshié-san this morning
- Joint Institute for Computational Fundamental Science (JICFuS)
 ⇒ Future plan session on Thu.

Future Plan

Future plan session on Thu.

HPCI Strategic Field Program (FY2011~FY2015)

- 2+1 flavor QCD \Rightarrow 1+1+1 flavor QCD+QED
- Direct construction of light nuclei
- Determination of baryon-baryon potentials

PACS-CS/T2K-Tsukuba \Rightarrow K computer Large scale simulation on 40 times larger lattice at the physical point

Summary

Historical role of PACS-CS/T2K-Tsukuba

- Achievement of physical point simulation
- Beginning of precision measurement with EM and u-d quark mass difference
- One-body study of hadron ⇒ Hadron-hadron interaction including Nuclei

Peak	Machine	Scientific Target
<1TF class	CP-PACS	Development of 2+1 flavor QCD simulation
10TFclass	PACS-CS	Physical point simulation
100TFclass	T2K- Tsukuba	Development of 1+1+1flavor QCD+QED simulation Construction of Nuclei with heavy m _{ud}
1PF class 10PF class	HA-PACS K computer	Large scale simulation of 1+1+1 flavor QCD+QED Construction of Nuclei at the physical point