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INTRODUCTION 
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SYMMETRY ENERGY

•  Nuclear matter equation of state (EOS) plays important role in nuclear physics and  astrophysics 
•  EOS of neutron matter is essential to understand the physics of neutron stars and binary mergers 

•  Neutron star 
properties ? 

A.Le Fevre et al., NPA 945, 112 (2016) 

•  Symmetry energy S(ρ) describes the increase in the energy 
of the N≠Z system as protons are turned into neutrons; 

•  It is important for understanding the properties of neutron-
rich matter and neutron rich nuclei 

 
•  S(ρ) is constrained by data on finite nuclei near the 

saturation density 

•  EOS 
beyond the 
saturation 
point? 



NEUTRON MATTER EOS  

F.J. Fattoyev and J. Piekarewicz, PRC 86, 015802 (2012). 

èTheoretical uncertainties associated 
with the FSUGold model. 

Drischler,  A. Carbone, K. Hebeler, A. Schwenk,  
arXiv:1608.05615 (2016).  

•  Energy per particle for pure neutron matter with uncertainty estimates  
 – from phenomenological toward ab-initio calculations 

èTheoretical uncertainties due 
to parameter variation in 3N forces 



THEORY FRAMEWORK 

B. Tsang, NSCL 

•  Nuclear matter equation of state: 

✏ = (⇢0 � ⇢)/(3⇢0)

•  Symmetry energy term: 

J – symmetry energy at saturation density 
 
L – slope of the symmetry energy 
      (related to the pressure of neutron matter)  

SYMMETRY ENERGY 
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SYMMETRY ENERGY

⇢ = ⇢n + ⇢p

Esym(⇢) ⌘ S2(⇢) = J � L✏+ . . .

L = 3⇢0
dS2(⇢)

d⇢
|⇢0

⇢0

E(⇢, �) = ESNM (⇢) + Esym(⇢)�2 + ...

� =
⇢n � ⇢p

⇢



 
•  In nuclei, thickness of the neutron skin 

rnp = rn-rp depends on the pressure of 
neutron matter PPNM ~ L 

Ø   the size of rnp increases with pressure 
as neutrons are pushed out against 
surface tension 

 
•  The pressure of neutron matter       

PPNM ~ L is poorly constrained 

•  Parity violating electron scattering - 
Lead Radius Experiment 

     (PREx) @ JLab: 

NEUTRON SKINS AND THE SYMMETRY ENERGY 
 

X. Roca-Maza et al., PRL106, 252501 (2011) 
J. Piekarewicz, arXiv:1502.01559 (2015) 

Abrahamyan et al. PRL 108, 112502 (2012) 



 

•  There are various (isovector) modes of collective excitations that also provide 
constraints on the neutron skin thickness, with recent experimental data available 

 
 
 

•  Isovector giant dipole resonances 

Ø  Dipole polarizability: A. Tamii et al., PRL 107, 062502 (2011) 

          D.M. Rossi et al., PRL 111, 242503 (2013) 
              T. Hashimoto et al., Phys. Rev. C 92, 031305(R) (2015)  

•  Pygmy dipole resonances: A. Carbone et al., PRC 81, 041301(R) (2010) 
       A. Klimkiewitz et al., PRC 76, 051603(R) (2007) 
 

 
•  Anti-analog GDR: A. Krasznahorkay et al., PLB 720, 428 (2013) 

•  Isovector giant quadrupole resonances: S.S. Henshaw, M.W. Ahmed, et al, PRL 107, 222501 (2011)  

•  … 
 

COLLECTIVE EXCITATIONS  AND THE SYMMETRY ENERGY 
 

•  The goal: use collective excitations to constrain the symmetry energy 

↵D ⇠ m�1



 

 
 
•  The model parameters are constrained directly by many-body  
      observables (masses, charge radii, pseudo-data, …) 

•  Complicated many body dynamics encoded in the functional and its empirical constants 
 
•  DIRHB -- a relativistic self-consistent mean-field framework for atomic nuclei 

Relativistic Hartree Bogoliubov model T. Niksic et al., Comp. Phys. Comm. 185, 1808 (2014). 
 
•  In the small amplitude limit, self-consistent quasiparticle random phase approximation 

(QRPA) is used to compute nuclear excitations, etc.  
 

i) Nucleons are Dirac particles coupled          ii) Four-fermion contact interaction 
by the exchange mesons and the photon field T        (Point-coupling model) 

RELATIVISTIC NUCLEAR ENERGY DENSITY FUNCTIONAL   

THEORY FRAMEWORK 

ρ σ ω 



CORRELATIONS: NUCLEAR MATTER vs. PROPERTIES OF NUCLEI 

Correlation matrix between 
nuclear matter properties 
and several properties for 
208Pb (DDME-min1) 
 
- neutron skin thickness,  
properties of giant 
resonances,… 
 
strongly correlated 
 
uncorrelated 
 
 
  

•  Covariance analysis in the EDF framework - information on relevant correlations and 
statistical uncertainties 

•  Pearson product-moment correlation coefficient 
     provides a measure of the correlation (linear dependence) 
     between two variables A and B. 

208Pb 
X. Roca Maza, N.P., G. Colò, JPG 42, 034033 (2015) 

Mij = 1
2⇥pi⇥pj �

2|p0

Curvature matrix: 



VARIATION OF THE SYMMETRY ENERGY IN CONSTRAINING THE EDF 

•  Adjust the properties of 72 spherical nuclei to exp. data (binding energies, charge 
radii, diffraction radii, surface thickness, pairing gaps)  

 
•  Establish a set of 8 relativistic point coupling interactions that span the range of 

values of the symmetry energy at saturation density: J=29,30,…36 MeV 

•  Each interaction is determined independently using the same dataset supplemented 
with an additional constraint on J 
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J[MeV] L[MeV] 
29  31.9 
30 37.0 
31 44.1 
32 52.5 
33  62.2 
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35 83.4 
36 94.3 
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•  Isovector dipole transition strength for 208Pb using a set of relativistic point coupling 
interactions which vary the symmetry energy properties (J=30,31,…,36 MeV) 

Pygmy  
strength Isovector giant 

dipole resonance 

•  Isovector giant dipole resonance 
•  Pygmy dipole strengths 
•  Dipole polarizability (                     ) 

•  The transition strength is sensitive 
on the properties of symmetry 
energy - (J,L) 

 
è Dipole response can be used to 

constrain effective nuclear 
interactions (isovector channel) 

 
 

      

↵D ⇠ m�1

•  There are exp. data available on the 
dipole response in nuclei 

     (αD, IVGDR, pygmy strength) 

CONSTRAINING THE SYMMETRY ENERGY 



28 30 32 34 36
J [MeV]

3.4

3.6

3.8

4

4.2

4.4 68Ni

α D
 [f

m
3 ]

20 40 60 80 100
L [MeV]

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

68Ni

α D
 [f

m
3 ]

DIPOLE POLARIZABILITY IN 68Ni AND SYMMETRY ENERGY 

•  Measurement of dipole polarizability 
of unstable neutron rich  68Ni 
D. Rossi et al, PRL 111, 242503 (2013) 
 
•  Implementation to constrain the 

symmetry energy using relativistic 
point coupling interactions 



DIPOLE POLARIZABILITY IN 208Pb AND SYMMETRY ENERGY 
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•  Using relativistic point coupling 
interactions and measurement of 
dipole polarizability in 208Pb 

•  A. Tamii et al., PRL 107, 062502 (2011) 



•  Isovector quadrupole transition strength for 208Pb using a set of relativistic point coupling 
interactions which vary the symmetry energy properties (J=30,31,…,36 MeV) 

GIANT QUARUPOLE RESONANCES IN 
208Pb  

GIANT QUADRUPOLE RESONANCES IN 208Pb AND SYMMETRY ENERGY 
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GIANT QUADRUPOLE RESONANCES IN 208Pb AND SYMMETRY ENERGY 
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S.S. Henshaw, M.W. Ahmed, G. Feldman et al, PRL 107, 222501 (2011)  

•  Precise determination of isovector giant quadrupole resonances 
 

•  IVGQR energy is strongly correlated with the symmetry energy parameters 
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CONSTRAINING THE SYMMETRY ENERGY (J-L) 
 

•  Based on relativistic density-dependent point coupling interactions 

J = 31.6 ± 0.7 MeV 
L = 50.6 ± 6.4 MeV 
 



CONSTRAINING THE SYMMETRY ENERGY (J-L) 
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•  Lattimer & Lim, ApJ. 771, 51 (2013) – compilation from various approaches 
•  K. Hebeler et al., AJ 773, 11 (2013) – based on nuclear interactions derived from chiral EFT 
•  P. Danielewicz and J. Lee, Nucl. Phys. A 818, 36 (2009) – IAS 
•  A. Carbone, G. Colo, A. Bracco, et al., Phys. Rev. C 81, 041301 (2010) – PDR 
•  A. W. Steiner and S. Gandolfi, Phys. Rev. Lett. 108, 081102 (2012) – QMC (Av8’)+ neutron stars 
•  etc. 



•  use the experimental data on collective excitations to constrain the symmetry energy 
within the fitting protocol to determine the parameters of the functional (relativistic 
point coupling interaction) 

•  Adjust the properties of 72 spherical nuclei to exp. data (binding energies, charge 
radii, diffraction radii, surface thickness, pairing gaps)  

 
•  constrain the symmetry energy S2(ρ0)=J (2%) from exp. data on dipole polarizability 

(208Pb) within an iterative procedure A. Tamii et al., PRL 107, 062502 (2011) + update (2015). 
 
•  constrain the nuclear matter incompressibility Knm (2%) from exp. data on ISGMR  
     modes (208Pb); D. Patel et al., PLB 726, 178 (2013). 
 
•  constrain the maximal neutron star mass by solving the Tolman-Oppenheimer-Volkov 

(TOV) equations  + observational data from J. Antoniadis, et al. Science 340, 448 (2013) 

“Correct symmetry energy” is the one obtained for the interaction that accurately 
reproduces the exp. data on dipole polarizability 
 

 

CONSTRAINING THE SYMMETRY ENERGY: 2nd approach  
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•  ISGMR energy determines  
the nuclear matter incompressibility: 
Knm=232.4 MeV 
 
E (Exp.) = (13.91 ± 0.11) MeV (TAMU) 
E (Exp.) = (13.7 ± 0.1) MeV (RCNP) 

 
 
 
Dipole polarizability: 
αD= (19.68 ± 0.21) fm3 

 
Exp. 
αD= (19.6 ± 0.6)  fm3 
 

A.Tamii et al., PRL 107, 062502 
(2011). + update (2015). 
 
 •  IVGDR – αD determine the 

 symmetry energy for the interaction 
 
        J = 31.89 MeV 
        L = 51.48 MeV 
 
 
 
 
 

CONSTRAINING THE SYMMETRY ENERGY: 2nd approach  
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SOME OTHER PROPERTIES… 

Neutron star mass-radius relationship  Pure neutron matter 



•  exploit excitations in finite nuclei to constrain the 
neutron star core-to crust transition density (nt)  and 
pressure (Pt) -  they are sensitive to the density 
dependence of the nuclear matter symmetry energy 

 
•  Find the density at which the uniform nuclear matter 

becomes unstable against  small-amplitude density 
fluctuations 

 

Neutron star structure and excitations in finite nuclei  

Theory framework: 
 
•  Thermodynamic method to determine liquid-to-solid transition density and pressure, 

based on relativistic energy density functional. Ch. C. Moustakidis et al., PRC 81, 065803 (2010) 

•  Consistent approach: the same energy density functional for excitations in finite nuclei, 
nuclear matter equation of state and symmetry energy, and neutron star properties 

•  Constraints from the exp. data on excitations are used 
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Neutron star structure and excitations in finite nuclei 

•  Constraints on the neutron star core-to-crust transition density nt and pressure Pt 

•  Calculations are based on the RNEDF, and experimental data for AGDR, IVGQR and 
IVSMR excitation energies (208Pb), dipole polarizability (208Pb) and PDR energy weighted 
strength (68Ni). 

N. P., Ch. C. Moustakidis, T. Marketin, D. Vretenar, G. A. Lalazissis, PRC 90, 011304(R) (2014) 

nt([fm-3] 

RNEDF (EXC.) 0.0955 

A18+δv+UIX* 
(A. Akmal, 1998) 

0.087 
 

EOS Friedman 
Pandharipande 
(C.P. Lorenz, 1993) 

0.096 

Chiral EFT (NN+3N) 
(K. Hebeler, 2013) 

0.076-0.088 

HIC  
(B.A.Li, 2005) 

0.040-0.065 



CONCLUDING REMARKS 

•  Dipole excitations in nuclei (PDR, αD, IVGDR, AGDR) and other modes (IVGQR,…) provide 
valuable constraints for the nuclear matter symmetry energy 

 
•  small uncertainty in the calculated symmetry energy (J,L) considerably limits the choice of 

currently available equations of state used in modeling neutron stars and supernova matter. 

•  Accurate measurements have important implications to reduce uncertainties in the 
symmetry energy  

•  Prospects to include the properties of collective excitations as new observables in the fitting 
protocols to determine the parameters of the EDF (especially to constrain better the 
isovector channel of the interaction) 

 
•  Neutron star core-to-crust transition density and pressure can be assessed using 

information on collective nuclear excitations  / symmetry energy 
 

  


