First Tsukuba-CCS-RIKEN joint workshop on microscopic theories of nuclear structure and dynamics

Microscopic description of nuclear β -decay half-lives

牛中明 (Zhongming Niu)

Interdisciplinary Theoretical Science Research Group, RIKEN School of Physics and Material Science, Anhui University

12 December 2016

- Introduction
- Theoretical framework
- Results and discussion
- Summary and perspectives

Introduction

- The nuclear β -decay plays an important role not only in the nuclear physics, but also in other branches of science, such as astrophysics.
- Since majority of neutron-rich nuclei relevant to the r-process are still out of the reach of experimental capabilities, theoretical predictions have to be used.
- Theoretical models:
 - ★ Phenomenological formula; Zhang2006PRC, Zhang2007JPG
 - ★ Gross theory; Takahashi1973ADNDT, Takahashi1990PTP, Nakata1997NPA
 - the reliability of the extrapolation is questionable
 - ★ The shell model; Pinedo1999PRL, Caurier2002PRC, Langanke2003RMP
 - large configuration spaces \rightarrow mainly for nuclei with A<60 or near magic nums
 - \star The proton-neutron quasiparticle random phase approximation (PN-QRPA);
 - can treat arbitrarily heavy systems; Möller1997ADNDT, Sarriguren2011PRC

Introduction

Introduction

Self-consistent QRPA (the residual interactions in the QRPA calculations are selfconsistently derived with the effective interactions used in the g.s. calculations):

★ Traditional (non-relativistic) density functional:

DF (Fayans)+CQRPA:Borzov1996ZPA, Borzov2003,2005PRC, Borzov2008NPAETFSI (Skyrme)+CQRPA:Borzov1997NPA, Borzov2000PRCSHF BCS+QRPA:Minato2009PRC, Sarriguren2010PRCSHFB+QRPA:Engel1999PRC

★ Covariant (relativistic) density functional:

RHB+QRPA:Paar2004PRC, Nikšić2005PRC, Marketin2007PRCIn present RHB+QRPA model, π meson field is absent in the g.s. descriptionand the strength parameter of counter-term of π meson field (g') in QRPAcalculation is treated as an adjustable parameter.

Introduction

• The fully consistent RHF+RPA model has achieved great success in the description of both nuclear ground state and charge-exchange excitations. Liang2008PRL

- $\star \pi$ is included in both the g.s. description and the p-h residual interaction;
- \star the exact zero-range counter-term with g'=1/3 is maintained.
- The RHF model has been extended to the RHFB, which gives a unified and selfconsistent description of both mean field and pairing correlations.
 - Long2010PRC, Long2010PRC(R)
- Based on the RHFB approach, we have developed the fully consistent QRPA (RHFB+QRPA) model recently. Niu2013PLB

Present talk:

• employ the RHFB+QRPA model to calculate the nuclear β -decay rates and investigate the influence of Fock terms and pairing correlations.

Introduction

- Theoretical framework
 - \star Relativistic Hartree-Fock-Bogoliubov theory
 - \star Quasiparticle random phase approximation
 - \star Nuclear β -decay half-lives
- Results and discussion
- Summary and perspectives

6/18

Theoretical framework

Relativistic Hartree-Fock-Bogoliubov theory

Effective Lagrangian density:

$$\begin{split} L &= \overline{\psi} \bigg[i \gamma^{\mu} \partial_{\mu} - M - g_{\sigma} \sigma - \gamma^{\mu} \bigg(g_{\omega} \omega_{\mu} + g_{\rho} \vec{\tau} \cdot \vec{\rho}_{\mu} + e \frac{1 - \tau_{3}}{2} A_{\mu} \bigg) - \frac{f_{\pi}}{m_{\pi}} \gamma_{5} \gamma^{\mu} \partial_{\mu} \vec{\pi} \cdot \vec{\tau} \bigg] \psi \\ &+ \frac{1}{2} \partial^{\mu} \sigma \partial_{\mu} \sigma - \frac{1}{2} m_{\sigma}^{2} \sigma^{2} - \frac{1}{4} \Omega^{\mu\nu} \Omega_{\mu\nu} + \frac{1}{2} m_{\omega}^{2} \omega^{\mu} \omega_{\mu} - \frac{1}{4} \vec{R}^{\mu\nu} \cdot \vec{R}_{\mu\nu} + \frac{1}{2} m_{\rho}^{2} \vec{\rho}^{\mu} \cdot \vec{\rho}_{\mu} \\ &+ \frac{1}{2} \partial^{\mu} \vec{\pi} \cdot \partial_{\mu} \vec{\pi} - \frac{1}{2} m_{\pi}^{2} \vec{\pi} \cdot \vec{\pi} - \frac{1}{4} F^{\mu\nu} F_{\mu\nu}. \end{split}$$

RHFB equation: Kucharek1991ZPA, Long2010PRC

$$\int d\mathbf{r}' \begin{pmatrix} h(\mathbf{r},\mathbf{r}') - \lambda & \Delta(\mathbf{r},\mathbf{r}') \\ \Delta(\mathbf{r},\mathbf{r}') & -h(\mathbf{r},\mathbf{r}') + \lambda \end{pmatrix} \begin{pmatrix} \psi_U(\mathbf{r}') \\ \psi_V(\mathbf{r}') \end{pmatrix} = E \begin{pmatrix} \psi_U(\mathbf{r}) \\ \psi_V(\mathbf{r}) \end{pmatrix},$$

where $h(\mathbf{r},\mathbf{r}')$ and $\Delta_{\alpha}(\mathbf{r},\mathbf{r}')$ are the mean field and paring potential

$$h(\mathbf{r},\mathbf{r}') = h^{\mathrm{kin}}(\mathbf{r},\mathbf{r}') + h^{\mathrm{D}}(\mathbf{r},\mathbf{r}') + h^{\mathrm{E}}(\mathbf{r},\mathbf{r}'), \quad \Delta_{\alpha}(\mathbf{r},\mathbf{r}') = -\frac{1}{2} \sum_{\beta} V_{\alpha\beta}^{pp}(\mathbf{r},\mathbf{r}') \kappa_{\beta}(\mathbf{r},\mathbf{r}').$$

 $\star h^{\text{kin}}$, h^{D} , and h^{E} : PKO1. Long2006PLB

 $\star V^{pp}$: Gogny pairing force with D1S parameter set. Berger1991CPC

Quasiparticle random phase approximation

QRPA equations: Ring1995Springer

$$\begin{pmatrix} A & B \\ -B & -A \end{pmatrix} \begin{pmatrix} X^{\nu} \\ Y^{\nu} \end{pmatrix} = \omega_{\nu} \begin{pmatrix} X^{\nu} \\ Y^{\nu} \end{pmatrix}$$

where ω_v is the excitation energy, X_v and Y_v denote the 2qp amplitudes. The QRPA matrices A and B read:

$$A_{kk'll'} = (E_k + E_{k'})\delta_{kl}\delta_{k'l'} + \frac{\delta^2 E}{\delta R^*_{kk'}\delta R_{ll'}}, \qquad B_{kk'll'} = \frac{\delta^2 E}{\delta R^*_{kk'}\delta R^*_{ll'}}$$

In the canonical basis, the matrices A and B for the charge-exchange channel read:

$$\begin{aligned} A_{pnp'n'} &= H_{pp'}^{11} \delta_{nn'} + H_{nn'}^{11} \delta_{pp'} \\ &+ V_{pnp'n'}^{ph} (u_{p} v_{n} u_{p'} v_{n'} + v_{p} u_{n} v_{p'} u_{n'}) \\ &+ V_{pnp'n'}^{pp} (u_{p} u_{n} u_{p'} u_{n'} + v_{p} v_{n} v_{p'} v_{n'}), \\ B_{pnp'n'} &= V_{pnp'n'}^{ph} (u_{p} v_{n} v_{p'} u_{n'} + v_{p} u_{n} u_{p'} v_{n'}) \\ &- V_{pnp'n'}^{pp} (u_{p} u_{n} v_{p'} v_{n'} + v_{p} v_{n} u_{p'} u_{n'}). \end{aligned}$$

$$\begin{aligned} RPA \quad QRPA \\ &E \to H^{11} \\ u, v = 0, 1 \to u, v = [0, 1] \\ V^{pp} &= 0 \to V^{pp} \neq 0 \end{aligned}$$

where $H_{kl}^{11} = (u_k u_l - v_k v_l) h_{kl} - (u_k v_l - v_k u_l) \Delta_{kl}$. Paar2003, 2004PRC

Nuclear β-decay half-lives

• The nuclear β-decay half-life in the allowed Gamow-Teller approximation reads as

follows:

$$T_{1/2} = \frac{\ln 2}{\lambda_{\beta}} = \frac{D}{g_A^2 \sum_m \left| \sum_{pn} \left\langle \mathbf{1}_m^+ \left| \sigma \tau \right| \mathbf{0}^+ \right\rangle \right|^2 f(Z, A, E_m)},$$

where $D = \frac{\hbar^7 2\pi^3 \ln 2}{g^2 m_e^5 c^4} = 6163.4 \text{ s}, g_A = 1$. The transition probability $\langle \mathbf{1}_m^+ | \sigma \tau | \mathbf{0}^+ \rangle$ can be

directly taken from the QRPA calculations.

\star The integrated (e, \overline{v}_{e}) phase volume $f(Z,A,E_{m})$:

$$f(Z, A, E_m) = \frac{1}{m_e^5} \int_{m_e}^{E_m} p_e E_e (E_m - E_e)^2 F(Z, A, E_m) dE_e,$$

 \star The maximum value of β-decay energy $E_{\rm m}$:

$$\boldsymbol{E}_{m} = \boldsymbol{E}_{i} - \boldsymbol{E}_{f} = (\boldsymbol{m}_{n} - \boldsymbol{m}_{p}) - \boldsymbol{E}_{\text{QRPA}} = \boldsymbol{\Delta}_{np} - \boldsymbol{E}_{\text{QRPA}}.$$

Due to $E_{\rm m} > m_{\rm e}$, the sum on *m* runs over all final states with $E_{\rm QRPA}$ smaller than $\Delta_{\rm nH} = \Delta_{\rm np} - m_{\rm e} = 0.782$ MeV.

- Introduction
- Theoretical framework
- Results and discussion
- Summary and perspectives

β-decay rates in QRPA calculations

Figure: β -decay half-lives of ¹³⁴Sn. The results based on the (Q)RPA calculations without any residual interactions and the calculations gradually including the residual interactions of σ and ω fields, ρ field, π field, and T = 0 pairing are presented. ph residual interactions: increase
 the calculated β-decay half-lives.
 RHF(B)+(Q)RPA: σ- and ω-mesons
 play an important role via exchange
 terms.

pp interactions:

T=1: are necessary to reproduce data.T=0: can reduce the calculated β-decay half-lives significantly.

Results and discussion

The influence of T=0 pairing

Figure: β-decay half-lives for Fe and Cd isotopes calculated in RHFB+QRPA model with the PKO1 parameter set.

Z. M. Niu, Y. F. Niu, H. Z. Liang, W. H. Long, T. Niksic, D. Vretenar, and J. Meng, PLB 723, 172 (2013).

► The V_0 fitted to the β -decay half-lives of ⁷⁰Fe and ¹³⁰Cd are significantly different. With the V_0 fitted to the β decay half-lives of ¹³⁰Cd, the calculated results underestimated the β -decay halflives of ^{118,120,122}Cd. → This may point out a possible isospin-dependence of V_0 .

By fitting to the experimental half-lives of Ca-Sn nuclei, an isospin-dependent function similar to the Woods-Saxon potential is proposed:

$$V_0 = V_1 + \frac{V_2}{1 + e^{a+b(N-Z)}},$$

V₁=134 MeV, V₂=121 MeV, *a*=8.5, *b*=-0.4.

β-decay rates of Ca-Sn isotopes

Figure: The ratios of theoretical half-lives to the experimental values as a function of the experimental half-lives for Ca-Sn isotopes. The circles and diamonds represent the results calculated by the RHFB+QRPA and FRDM+QRPA approaches, respectively.

RHFB+QRPA: well reproduces the experimental half-lives of these neutron-rich nuclei except for some magic nuclei, such as the Ni isotopes.

FRDM+QRPA: generally overestimates the nuclear half-lives, which can be attributed partially to the neglect of the isoscalar pn pairing.

Influence of Q_{β} values

 The experimental Q_β values are systematically underestimated by the RHFB theory.

The new results are in excellent agreement with the experimental data, which reflects the importance of accurate nuclear mass predictions in half-life calculations.

This modification of Q_{β} is not selfconsistent in the predictions of nuclear β -decay half-lives. **Results and discussion**

Results and discussion

PVC effect on β -decay half-life

The effect of the PVC decreases the half-lives by large factors compared to RPA, substantially improving the agreement with experimental data.

Y. F. Niu, <u>Z. M. Niu</u>, G. Colò, and E. Vigezzi, PRL 114, 142501 (2015)

Figure: The β -decay half-lives of 132Sn, 68Ni,34Si, and 78Ni, calculated by RPA and RPA+PVC approaches, respectively, in comparison with experimental values.

- Introduction
- Theoretical framework
- Results and discussion
- Summary and perspectives

Summary and perspectives

• Summary:

- \star The nuclear β-decay half-lives are sensitive to the pp residual interactions and that in the T=0 channel can significantly reduce the β-decay half-lives.
- ★ The self-consistent RHFB+QRPA calculations well reproduce the experimental half-lives of Ca-Sn isotopes with an isospin-dependent *T*=0 pairing except for some magic nuclei.
- ★ The effect of the PVC decreases the half-lives by large factors compared to RPA, substantially improving the agreement with experimental data for magic nuclei.

Perspectives:

- \star QRPA \rightarrow QRPA+QPVC
- ★ Deformation degree
- \star Other applications: 2 β decay and neutrino-nucleus scattering

Acknowledgement

Collaborators:

PKU: J. Meng

LZU: W. H. Long

RIKEN: H. Z. Liang

ELI-NP: Y. F. Niu

University of Zagreb: D. Vretenar

Thank you!