First Tsukuba-CCS-RIKEN joint workshop on microscopic theories of nuclear structure and dynamics

Microscopic description of nuclear β-decay half-lives

牛中明 (Zhongming Niu)
Interdisciplinary Theoretical Science Research Group, RIKEN
School of Physics and Material Science, Anhui University

12 December 2016
Outline

1. Introduction
2. Theoretical framework
3. Results and discussion
4. Summary and perspectives
The nuclear β-decay plays an important role not only in the nuclear physics, but also in other branches of science, such as astrophysics.

Since majority of neutron-rich nuclei relevant to the r-process are still out of the reach of experimental capabilities, theoretical predictions have to be used.

Theoretical models:

- **Phenomenological formula;** Zhang2006PRC, Zhang2007JPG
- **Gross theory;** Takahashi1973ADNDT, Takahashi1990PTP, Nakata1997NPA

 the reliability of the extrapolation is questionable
- **The shell model;** Pinedo1999PRL, Caurier2002PRC, Langanke2003RMP

 large configuration spaces ➔ mainly for nuclei with $A<60$ or near magic nums
- **The proton-neutron quasiparticle random phase approximation (PN-QRPA);** Möller1997ADNDT, Sarriguren2011PRC
Self-consistent QRPA (the residual interactions in the QRPA calculations are self-consistently derived with the effective interactions used in the g.s. calculations):

★ Traditional (non-relativistic) density functional:

- DF (Fayans)+CQRPA: Borzov1996ZPA, Borzov2003,2005PRC, Borzov2008NPA
- ETFSI (Skyrme)+CQRPA: Borzov1997NPA, Borzov2000PRC
- SHF BCS+QRPA: Minato2009PRC, Sarriguren2010PRC
- SHFB+QRPA: Engel1999PRC

★ Covariant (relativistic) density functional:

In present RHB+QRPA model, π meson field is absent in the g.s. description and the strength parameter of counter-term of π meson field (g') in QRPA calculation is treated as an adjustable parameter.
Introduction

The fully consistent RHF+RPA model has achieved great success in the description of both nuclear ground state and charge-exchange excitations. Liang2008PRL

- π is included in both the g.s. description and the p-h residual interaction;
- the exact zero-range counter-term with $g' = 1/3$ is maintained.

The RHF model has been extended to the RHFB, which gives a unified and self-consistent description of both mean field and pairing correlations. Long2010PRC, Long2010PRC(R)

Based on the RHFB approach, we have developed the fully consistent QRPA (RHFB+QRPA) model recently. Niu2013PLB

Present talk:

- employ the RHFB+QRPA model to calculate the nuclear β-decay rates and investigate the influence of Fock terms and pairing correlations.
Outline

1. Introduction
2. Theoretical framework
 - Relativistic Hartree-Fock-Bogoliubov theory
 - Quasiparticle random phase approximation
 - Nuclear β-decay half-lives
3. Results and discussion
4. Summary and perspectives
Relativistic Hartree-Fock-Bogoliubov theory

- Effective Lagrangian density:

\[
L = \overline{\psi} \left[i\gamma^\mu \partial_\mu - M - g_\sigma \sigma - \gamma^\mu \left(g_\omega \omega_\mu + g_\rho \bar{\rho} \cdot \rho_\mu + e \frac{1 - \tau_3}{2} A_\mu \right) - \frac{f_\pi}{m_\pi} \gamma_5 \gamma^\mu \partial_\mu \bar{\pi} \cdot \bar{\pi} \right] \psi
\]

\[
+ \frac{1}{2} \partial^\mu \sigma \partial_\mu \sigma - \frac{1}{2} m_\sigma^2 \sigma^2 - \frac{1}{4} \Omega^{\mu\nu} \Omega_{\mu\nu} + \frac{1}{2} m_\omega^2 \omega^\mu \omega_\mu - \frac{1}{4} \bar{R}^{\mu\nu} \cdot \bar{R}_{\mu\nu} + \frac{1}{2} m_\rho^2 \bar{\rho}^\mu \cdot \bar{\rho}_\mu
\]

\[
+ \frac{1}{2} \partial^\mu \bar{\pi} \cdot \partial_\mu \bar{\pi} - \frac{1}{2} m_\pi^2 \bar{\pi} \cdot \bar{\pi} - \frac{1}{4} F^{\mu\nu} F_{\mu\nu}.
\]

- RHFB equation: Kucharek1991ZPA, Long2010PRC

\[
\int dr' \begin{pmatrix} h(r, r') - \lambda & \Delta(r, r') \\ \Delta(r, r') & -h(r, r') + \lambda \end{pmatrix} \begin{pmatrix} \psi_U(r') \\ \psi_V(r') \end{pmatrix} = E \begin{pmatrix} \psi_U(r) \\ \psi_V(r) \end{pmatrix},
\]

where \(h(r, r') \) and \(\Delta_\alpha(r, r') \) are the mean field and paring potential

\[
h(r, r') = h^{\text{kin}}(r, r') + h^D(r, r') + h^E(r, r'), \quad \Delta_\alpha(r, r') = -\frac{1}{2} \sum_\beta V^{pp}_{\alpha\beta}(r, r') \kappa_\beta(r, r').
\]

- \(h^{\text{kin}}, h^D, \) and \(h^E \): PKO1. Long2006PLB
- \(V^{pp} \): Gogny pairing force with D1S parameter set. Berger1991CPC
Quasiparticle random phase approximation

QRPA equations: Ring1995Springer

\[
\begin{pmatrix}
A & B \\
-B & -A
\end{pmatrix}
\begin{pmatrix}
X' \\
Y'
\end{pmatrix}
= \omega_v
\begin{pmatrix}
X' \\
Y'
\end{pmatrix}
\]

where \(\omega_v\) is the excitation energy, \(X_v\) and \(Y_v\) denote the 2qp amplitudes. The QRPA matrices \(A\) and \(B\) read:

\[
A_{kk'\ell\ell'} = (E_k + E_{k'})\delta_{kl}\delta_{k'l'} + \frac{\delta^2 E}{\delta R_{kk'}^* \delta R_{\ell\ell'}^*}, \quad B_{kk'\ell\ell'} = \frac{\delta^2 E}{\delta R_{kk'}^* \delta R_{\ell\ell'}^*}.
\]

In the canonical basis, the matrices \(A\) and \(B\) for the charge-exchange channel read:

\[
A_{pnp'n'} = H_{pp'}^{11} \delta_{nn'} + H_{np'}^{11} \delta_{pp'}
+ V_{pp'}^{ph}(u_p v_n u_{p'} v_{n'}) + V_{pp'}^{pp}(u_p v_n u_{p'} v_{n'}) + V_{pp'}^{ph}(u_p v_n u_{p'} u_{n'}) + V_{pp'}^{pp}(u_p v_n u_{p'} u_{n'})
\]

\[
B_{pnp'n'} = V_{pp'}^{ph}(u_p v_n u_{p'} v_{n'}) - V_{pp'}^{ph}(u_p v_n u_{p'} u_{n'})
\]

where \(H_{kl}^{11} = (u_k u_l - v_k v_l)h_{kl} - (u_k v_l - v_k u_l)\Delta_{kl}\).

Paar2003, 2004PRC
Nuclear β-decay half-lives

The nuclear β-decay half-life in the allowed Gamow-Teller approximation reads as follows:

\[T_{1/2} = \frac{\ln 2}{\lambda_\beta} = \frac{D}{g_A^2 \sum_m \left| \sum_{\rho n} \langle 1^+_m | \sigma \tau | 0^+ \rangle \right|^2 f(Z,A,E_m)}, \]

where \(D = \frac{\hbar^2 2\pi^3 \ln 2}{g^2 m_e^5 c^4} = 6163.4 \) s, \(g_A = 1 \). The transition probability \(\langle 1^+_m | \sigma \tau | 0^+ \rangle \) can be directly taken from the QRPA calculations.

- The integrated \((e, \bar{\nu}_e) \) phase volume \(f(Z,A,E_m) \):

\[f(Z,A,E_m) = \frac{1}{m_e^5} \int_{m_e}^{E_m} p_e E_e (E_m - E_e)^2 F(Z,A,E_m) dE_e, \]

- The maximum value of β-decay energy \(E_m \):

\[E_m = E_i - E_f = (m_n - m_p) - E_{QRPA} = \Delta_{np} - E_{QRPA}. \]

Due to \(E_m > m_e \), the sum on \(m \) runs over all final states with \(E_{QRPA} \) smaller than \(\Delta_{nH} = \Delta_{np} - m_e = 0.782 \) MeV.
Outline

1. Introduction
2. Theoretical framework
3. Results and discussion
4. Summary and perspectives
β-decay rates in QRPA calculations

Figure: β-decay half-lives of 134Sn. The results based on the (Q)RPA calculations without any residual interactions and the calculations gradually including the residual interactions of σ and ω fields, ρ field, π field, and $T = 0$ pairing are presented.

- **ph residual interactions:** increase the calculated β-decay half-lives.
- **RHF(B)+(Q)RPA:** σ- and ω-mesons play an important role via exchange terms.

- **pp interactions:**
 - $T=1$: are necessary to reproduce data.
 - $T=0$: can reduce the calculated β-decay half-lives significantly.
The influence of $T=0$ pairing

Results and discussion

By fitting to the experimental half-lives of Ca-Sn nuclei, an isospin-dependent function similar to the Woods-Saxon potential is proposed:

$$V_0 = V_1 + \frac{V_2}{1 + e^{a+b(N-Z)}},$$

$V_1=134$ MeV, $V_2=121$ MeV, $a=8.5$, $b=-0.4$.

Figure: β-decay half-lives for Fe and Cd isotopes calculated in RHFB+QRPA model with the PKO1 parameter set.

β-decay rates of Ca-Sn isotopes

Figure: The ratios of theoretical half-lives to the experimental values as a function of the experimental half-lives for Ca-Sn isotopes. The circles and diamonds represent the results calculated by the RHFB+QRPA and FRDM+QRPA approaches, respectively.

- RHFB+QRPA: well reproduces the experimental half-lives of these neutron-rich nuclei except for some magic nuclei, such as the Ni isotopes.
- FRDM+QRPA: generally overestimates the nuclear half-lives, which can be attributed partially to the neglect of the isoscalar pn pairing.
Influence of Q_β values

Figure: Q_β values and its influence on β-decay half-lives of Ni isotopes.

- The experimental Q_β values are systematically underestimated by the RHFB theory.

- The new results are in excellent agreement with the experimental data, which reflects the importance of accurate nuclear mass predictions in half-life calculations.

- This modification of Q_β is not self-consistent in the predictions of nuclear β-decay half-lives.
The effect of the PVC decreases the half-lives by large factors compared to RPA, substantially improving the agreement with experimental data.

Figure: The β-decay half-lives of 132Sn, 68Ni,34Si, and 78Ni, calculated by RPA and RPA+PVC approaches, respectively, in comparison with experimental values.
Outline

1. Introduction
2. Theoretical framework
3. Results and discussion
4. Summary and perspectives
Summary and perspectives

Summary:
- The nuclear β-decay half-lives are sensitive to the pp residual interactions and that in the T=0 channel can significantly reduce the β-decay half-lives.
- The self-consistent RHFB+QRPA calculations well reproduce the experimental half-lives of Ca-Sn isotopes with an isospin-dependent T=0 pairing except for some magic nuclei.
- The effect of the PVC decreases the half-lives by large factors compared to RPA, substantially improving the agreement with experimental data for magic nuclei.

Perspectives:
- QRPA → QRPA+QPVC
- Deformation degree
- Other applications: 2β decay and neutrino-nucleus scattering
Collaborators:

PKU: J. Meng
LZU: W. H. Long
RIKEN: H. Z. Liang
ELI-NP: Y. F. Niu
University of Zagreb: D. Vretenar

Thank you!