Self-consistent Collective Coordinate in Richardson model

First Tsukuba-CCS-RIKEN joint workshop

Univ. of Tsukuba NI Fang (倪 放)

Collaborator: NAKATSUKASA Takashi (中務 孝)

<u>Outline</u>

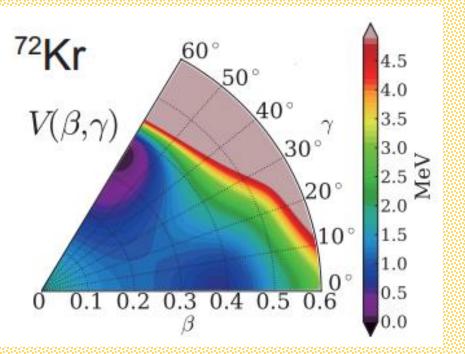
Introduction Collective coordinate Pairing, Richardson model

How to obtain collective coordinate self-consistently?

• Result

Collective coordinate (collective degree of freedom) "by hand"

ex) Quadrupole deformation parameter β , γ



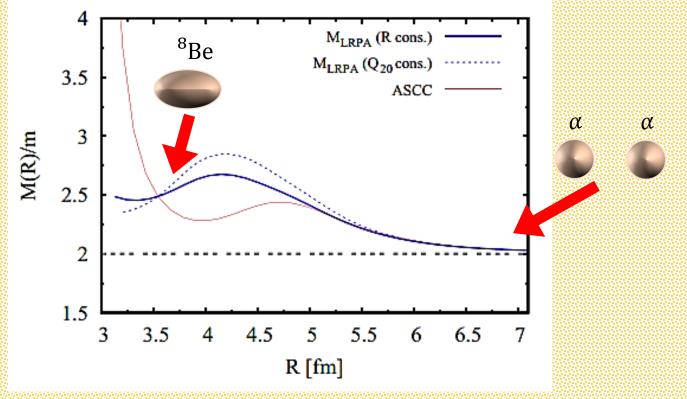
K. Matsuyanagi, et al., JPG (2016)

Theoretical approach: Constrained Hartree-Fock(-Bogoliubov) method

Self-consistent collective coordinate (SCC) T. Marumori, et al., PTP (1980) M. Matsuo, et al., PTP (2000)

Q: Who decide the collective coordinate? A: SYSTEM ITSELF!

ex) Inertial mass in Reaction path in $\alpha + \alpha \leftrightarrow {}^{8}Be$



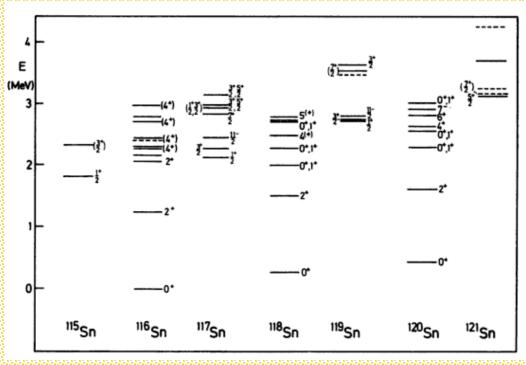
K. Wen, T. Nakatsukasa, PRC (2016)

Pairing correlation



Quite different structure between odd-even and even-even nuclei

Ground states are well understood by BCS or HFB



Pairing collective motion

P. Ring, P. Schuck, The Nuclear Many-Body Problem

- How can we describe pairing collective motion?
- Are there suitable collective coordinates? Pairing gap Δ ?

Consider a simple pairing model: Richardson model

Excitation spectra in Sn isotopes

Richardson model

(pairing model, multi-seniority model)

g Coupling constant

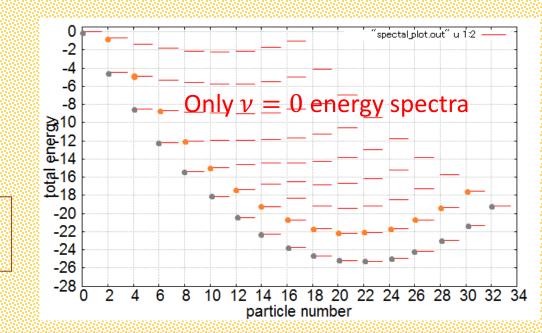
Initial parameters

 ϵ_l Single-particle energy $\Omega_l = j_l + 1/2$ Degeneracy

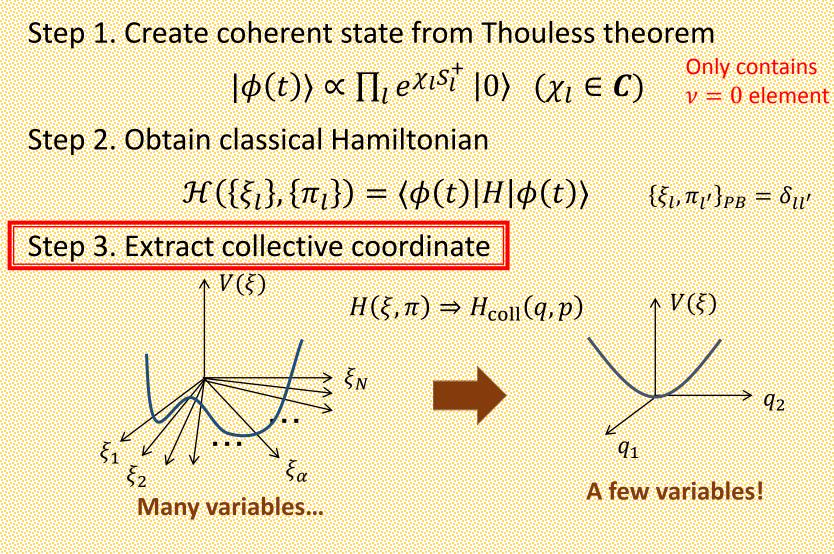
l: Label of energy level v_l : Seniority (unpaired particles)

- Exact solvable model
- ν = 0 excited states in multi-level system

Q: Can we describe these states by collective coordinate?



How to obtain collective coordinate?



Step 4. Requantization [q, p] = i

Obtain 1D collective coordinate self-consistently

Step 1. Find energy minimum point by solving HFB or BCS eq.

Step 2. Diagonalize moving QRPA eq. choose the lowest mode basically iteration

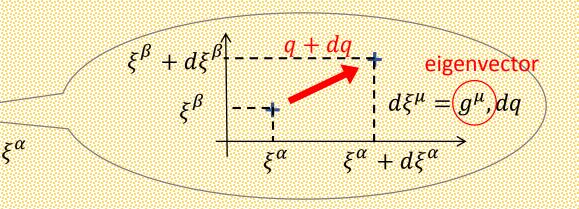
Collective path

Step 3. Decide the neighborhood point < of collective path from eigenvector.

Basic equation

(1) Moving HFB eq. $V_{,\alpha} = \lambda f_{,\alpha}$ (2) Moving covariant QRPA eq. $\begin{cases} B^{\beta\gamma}V_{;\alpha\gamma}f_{,\beta} = \omega^{2}f_{,\alpha}\\ B^{\beta\gamma}V_{;\alpha\gamma}g^{\alpha}, = \omega^{2}g^{\beta}, \end{cases}$ $q^{\mu} = f^{\mu}(\xi), \xi^{\alpha} = g^{\alpha}(q)$ $F_{,\alpha} \equiv \frac{\partial F}{\partial \xi^{\alpha}}$ derivative $V_{;\alpha\beta} \equiv V_{,\alpha\beta} - \Gamma^{Y}_{\alpha\beta}V_{,\gamma}$ covariant derivative

T. Nakatsukasa, PTEP 01A207 (2012)



Application

Classical Hamiltonian

expand ϕ up to 2nd order, π : coordinates, ϕ : momenta

$$\mathscr{H}(\{\phi_l\},\{\pi_l\}) = V(\pi) + \frac{1}{2}B^{\alpha\beta}(\pi)\phi_{\alpha}\phi_{\beta}$$

$$\begin{bmatrix} V(\pi) = \mathcal{H}(\phi = 0) \\ B^{\alpha\beta}(\pi) = \frac{\partial^2 \mathcal{H}}{\partial \phi_{\alpha} \partial \phi_{\beta}} \Big|_{\phi=0} \end{bmatrix}$$

Definition:

- q: collective coordinate
- q = 0 for energy minimum point
- Unify the scale of q by $\bar{B}(q) = f_{,\alpha} B^{\alpha\beta} f_{,\beta} = 1$

 $\overline{B}(q)$: collective mass parameter

Focus on neutron's pairing in Sn isotope system

Set up

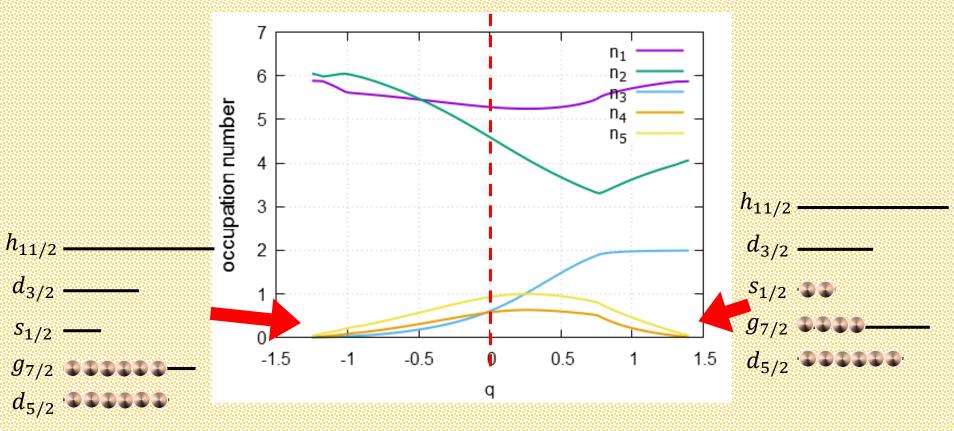
- sp-energy obtained from spherical WS potential + Spin-Orbit interaction in ¹⁰⁰Sn
- g = 0.241 (MeV) correspond to experimental value of pairing gap in ¹¹²Sn

Single-particle level	Energy (MeV)
h11/2	-7.38
d3/2	-8.15
s1/2	-8.92
g7/2	-9.65
d5/2	-10.98

<u>Result</u> (in ¹¹²Sn)

Occupation number of each level in collective path

BCS ground state

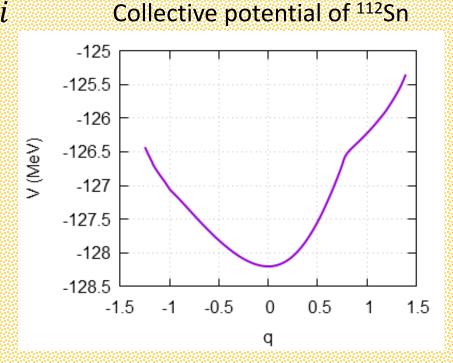


SYSTEM chose the collective path!!

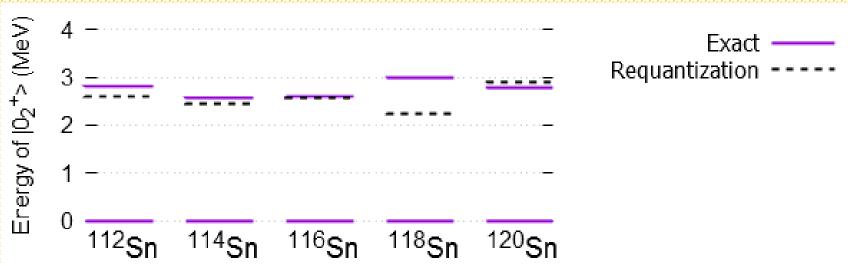
Requantization [q, p] = i

$$H_{coll} = -\frac{1}{2}\frac{d^2}{dq^2} + \bar{V}(q)$$

Dirichlet boundary condition: $\psi(q_{left}) = \psi(q_{right}) = 0$



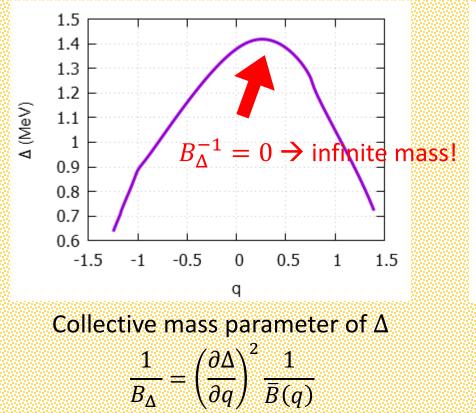
Other Sn isotopes...

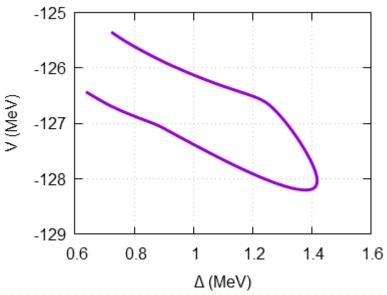


Is pairing gap available as a collective coordinate?

• Mapping q to Δ

Pairing gap $\Delta = g \sum_{k>0} u_k(q) v_k(q)$





No 1:1 correspondence!!

<u>Summery</u>

- We obtained collective path self-consistently in Richardson model
- The obtained collective path terminates at special states (Each orbit has integer(even) number of particles)
- Energy of $|0_2^+\rangle$ is well reproduced
- Pairing gap Δ is not suitable as a collective coordinate

Next step:

- Construct two-particle transfer operators in requantized form
- Search an available mapping parameter of collective coordinate
- Add quadrupole interaction

Thank you!

Explicit form of potential and mass parameter

$$V(\pi) = \sum_{l} \epsilon(-2S_{l}q_{l} + \Omega_{l}) - g \sum_{l} \frac{S_{l}}{2}(2S_{l}(1 - q_{l}^{2}) + (1 - q_{l})^{2})$$

$$-2g \sum_{l_{l} < l_{2}} S_{l_{1}}S_{l_{2}} \sqrt{(1 - q_{l_{1}}^{2})(1 - q_{l_{2}}^{2})}$$

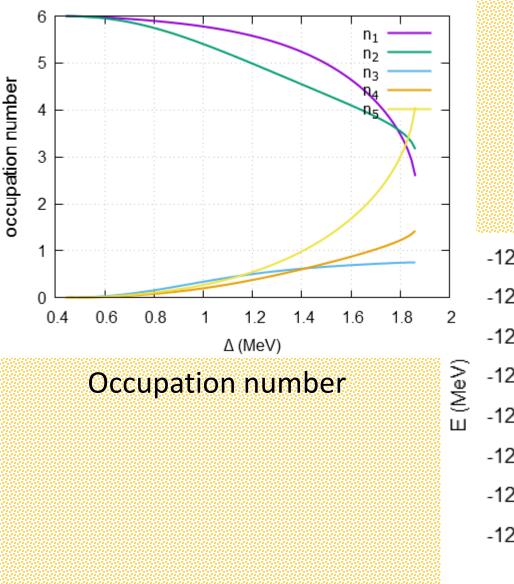
$$B^{\alpha\beta}(\pi) = \begin{cases} 2g \sum_{l \neq \alpha} S_{\alpha}S_{l} \sqrt{(1 - q_{\alpha}^{2})(1 - q_{l_{2}}^{2})} & \text{(for } \alpha = \beta) \\ -2gS_{\alpha}S_{\beta} \sqrt{(1 - q_{\alpha}^{2})(1 - q_{\beta}^{2})} & \text{(for } \alpha \neq \beta) \end{cases}$$

$$q_{\alpha} = \frac{1}{S_{\alpha}} \left(S_{\alpha} - \pi_{\alpha} - \frac{1}{L}\Pi\right) \text{ (for } \alpha : 2 \sim L)$$

$$q_{1} = \frac{1}{S_{1}} \left(S_{1} + \sum_{\alpha=2}^{L} \pi_{\alpha} - \frac{1}{L}\Pi\right)$$

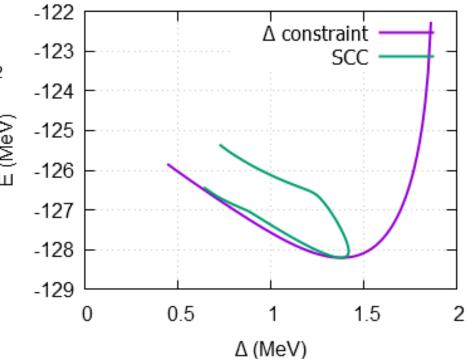
$$\Pi = (N - \nu)/2$$

Compare with Constraint BCS



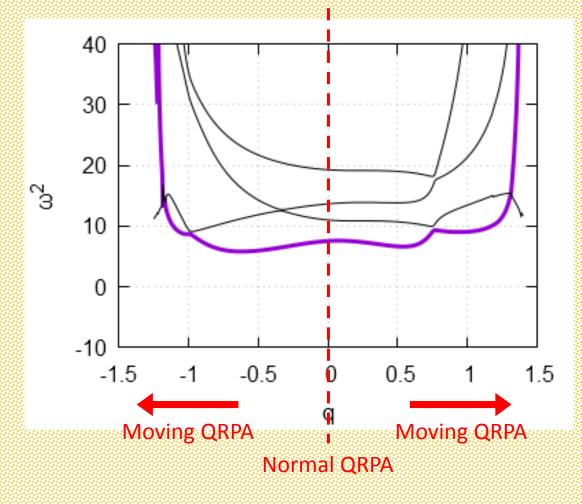
 $\begin{aligned} \widehat{H}' &= \widehat{H} - \mu \widehat{N} - \lambda \widehat{P} \\ \widehat{P} &= \sum_{k>0} \widehat{a}_k \widehat{a}_{\bar{k}} \end{aligned}$

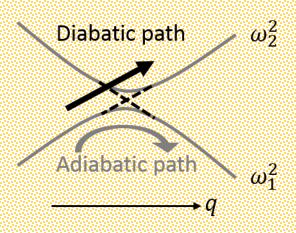
Potential



<u>Result</u> (in ¹¹²Sn)

1. Moving QRPA solution in collective path

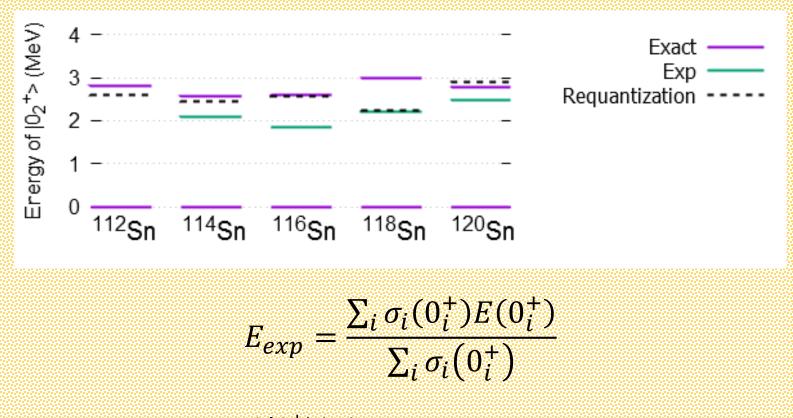




We choose the smoothest path!

$$D = |\sum_{\alpha} (f_{,\alpha}^{n})_{\mu} (f_{,\alpha}^{n-1})_{\nu}$$

Choose max of D



i: Excited $|0^+\rangle$ below 3MeV σ_i : Relative cross section of (t,p) or (p,t) with respect to g.s.

D. M. Brink, R. A. Broglia, Nuclear Superfluidity

energy of $ 0_2^+\rangle$	Exact	QRPA	Requantization
¹¹² Sn	2.80	2.75	2.61
¹¹⁴ Sn	2.56	2.70	2.46
¹¹⁶ Sn	2.61	2.73	2.58
¹¹⁸ Sn	2.98	2.68	2.24
¹²⁰ Sn	2.77	2.17	2.89

((🕘)

Collective path

