Division of Astrophysics and Nuclear Physics: Nuclear Physics Group (Parallel session \#2)

Takashi Nakatsukasa

@CCS, Univ. of Tsukuba, 2014.2.19

Stochastic generation of low-energy configurations and configuration mixing calculation with Skyrme interactions

Graduate Student Y. Fukuoka (expected to receive his PhD in March)

Fukuoka, Shinohara, Funaki, Nakatsukasa, Yabana, PRC 88, 014321 (2013)

Microscopic structure theories

- Ab-inito-type approaches
- GFMC, NCSM, CCM, etc.
- Computationally very demanding for heavier nuclei
- Shell model approaches
- CI calculation in a truncated space
- Difficulties in cross-shell excitations
- Microscopic cluster models
- RGM, GCM, etc.
- Interaction is tuned for each nucleus
- Energy density functional approaches
- New configuration-mixing (multi-ref.) calculation

Toward low-energy complete spectroscopy

Shinohara, Ohta, Nakatsukasa, Yabana, PRC 84, 054315 (2006)

- Beyond the mean field
- Correlations, excited states
- Beyond (Q)RPA
- States very different from the g.s.
- Beyond GCM
- Lift a priori generator coordinates

Toward the theoretical complete spectroscopy of lowlying states with an effective Hamiltonian and with a very large model space:

Configuration mixing with parity and angular momentum projection

1. Generation and selection of Slater det's in the 3D Cartesian Coordinate space

$$
\left\{\Phi^{i}\right\} \quad(i=1, \cdots, N)
$$

2. Projection on good J^{π} (3D rotation)

$$
\left|\Phi_{M K}^{J}\right\rangle=P^{ \pm} P_{M K}^{J}|\Phi\rangle
$$

3. Solution of generalized eigenvalue eq.

$$
\begin{aligned}
& \left(\mathbf{H}^{J \pm}-E \mathbf{N}^{J \pm}\right) \mathbf{g}=0 \\
& H_{n K}^{J \pm n^{\prime} K^{\prime}}=\left\langle\Phi^{n}\right|\left\{\begin{array}{c}
H \\
N_{n K, r^{\prime} K^{\prime}}^{J J}
\end{array}\right\} P^{ \pm} P_{K K}^{J}\left|\Phi^{n^{\prime}}\right\rangle
\end{aligned}
$$

Imaginary-time evolution

- Quickly removing high-energy (highmomentum) components
- Slowly moving on low-energy collective surface
- Finding local minima

Efficient method to construct configurations associated with many kinds of low-energy collective motions

Generation of basis states: Imaginary-time method in 3D coordinate space

Long-range correlations in terms of the configuration mixing

$$
\text { Imaginary-time Method } \quad\left|\phi_{i}^{(n+1)}\right\rangle=e^{-\Delta t h[\rho]}\left|\phi_{i}^{(n)}\right\rangle, \quad i=1, \cdots A
$$

A well-known method in the Skyrme HF calculations

3D space is discretized in lattice
Single-particle orbital:

$$
\phi_{i}(\mathbf{r})=\left\{\phi_{i}\left(\mathbf{r}_{k}\right)\right\}_{k=1, \cdots M r}, \quad i=1, \cdots, N
$$

Generation of many S-det's

$$
\left|\phi_{i}^{(n+1)}\right\rangle=e^{-\Delta t h[\rho]}\left|\phi_{i}^{(n)}\right\rangle, \quad i=1, \cdots A
$$

Screening of Slater determinants

Every one-hundred iterations,
we pick up a Slater determinant $\left|\Phi_{i}\right\rangle$ $\left|\Phi_{i}\right\rangle$ is adopted as the $(\mathrm{M}+1)$-th basis configuration, if it satisfies

$$
\begin{aligned}
& \left\langle\Phi_{i}\right| H\left|\Phi_{i}\right\rangle<E_{\mathrm{HF}}+30 \mathrm{MeV} \\
& \left\langle\Phi_{i} \mid \Phi_{j}\right\rangle<0.7 \quad(j=1, \cdots M)
\end{aligned}
$$

3D angular momentum projection

Parity and angular momentum projected state

$$
\begin{aligned}
&\left|\Psi_{M}^{J(\pm)}\right\rangle=\frac{2 J+1}{8 \pi^{2}} \sum_{K} g_{K} \int d \Omega D_{M K}^{J^{*}}(\Omega) \hat{R}(\Omega)\left|\Phi^{(\pm)}\right\rangle \\
& \hat{\mathrm{R}}(\Omega)=\mathrm{e}^{-\mathrm{i} \alpha \hat{\mathrm{~J}}_{\mathrm{z}}} \mathrm{e}^{-\mathrm{i} \beta \hat{\mathrm{~J}}_{\mathrm{y}}} \mathrm{e}^{-\mathrm{i} \gamma \hat{\mathrm{~J}}_{\mathrm{z}}} \quad \text { Parity-projected SD }
\end{aligned}
$$

Construct the angular momentum eigenstate by the explicit 3D rotation

Further Selection ...

Eigenvalues of the norm matrix

$$
\}
$$

$$
N_{n K, m K^{\prime}}^{J \pm}=\left\langle\Phi^{n}\right| P_{K K^{\prime}}^{J} P^{ \pm}\left|\Phi^{m}\right\rangle
$$ smaller than 10^{-3}

Garbage box

Numerical detail

- Three-dimensional (3D) Cartesian mesh
- Mesh size: 0.8 fm
- All the mesh points inside the sphere of radius of 8 fm
- Euler angles
- Discretization
$(\alpha, \beta, \gamma)=(18,30,18)$ points
- Numerical difficulties
- Limiting number of SD
- 50 Slater determinantns
- About 10 h computation time 8.0 fm with the use of 512 processors

How complete is the calculation?

- Ten different sets of Slater determinants, generated with different random numbers.
- Low-energy spectra within several hundred keV
- Transition strength within about 10 \%
${ }^{12} \mathrm{C}$

,(10 sets)
${ }^{12} \mathrm{C}_{\text {(Sly } 4)}$
Exp: M. Chernykh et al., PRL 98,032501 (2007)
AMD: Y. Kanada-En'yo, PTP117,655(2007)
GCM: E. Uegaki, et al., PTP57,4 (1977)1262
RGM: M. Kamimura, NPA351,456-480(1981)
NCSM : P. Navrátil and W. E. Ormand, PRC 68, 034305 (2003)

$B(E 2)$ in units of $e^{2 f m}{ }^{4}$
Calculation assuming three-alpha clusters

Tuning of the interaction

POSITIVE parity

Hoyle state : $0_{2}{ }^{+}$

41.2\%

36.1\%
31.7\%
28.9\%
superposition of many SDs
present

Ground state

89.8\%
86.9\%
86.2\%
:
70\% for HF state
\checkmark Correlation energy is 5 MeV
\checkmark Hoyle state is around 9 MeV
\checkmark Ground-state rotational band

${ }^{12} \mathrm{C}$ Negative-parity excited states

Overlap

$$
K^{\pi}=1^{-}
$$

$$
1_{1}^{-}: 77 \%
$$

$$
2_{1}^{-}: 75 \%
$$

$$
K^{\pi}=3^{-}
$$

$$
3_{1}^{-}: 81 \%
$$

$4_{1}^{-}: 76 \%$

Reliable results for the lowest state in each J^{π} Similar to the AMD result

Hoyle state

Radius

J^{π}	present	AMD FMD	3α RGM	BEC $3 \alpha \mathrm{GCM}$			
0_{1}^{+}	2.53 ± 0.03	2.53	2.39	2.40	2.40	2.40	
0_{2}^{+}	2.72 ± 0.003	3.27	3.38	3.47	3.83	3.40	
0_{3}^{+}	3.15 ± 0.02	3.98	4.62			3.52	Hoyle state
2_{1}^{+}	2.61 ± 0.002	2.66	2.50	2.38	2.38	2.36	

Exp, FMD: M. Chernykh et al., PRL 98,032501 (2007)
AMD: Y. Kanada-En'yo, PTP117,655(2007)
GCM: E. Uegaki, et al., PTP57,4 (1977)1262
RGM: M. Kamimura, NPA351,456-480(1981)
Monopole transition

$$
M\left(E 0 ; 0_{1}^{+} \rightarrow 0_{2}^{+}\right)=4.5 \pm 0.2 \mathrm{e} \mathrm{fm}^{2}
$$

$5.4 \pm 0.2 \quad$ Experiment
6.5-6.7 Other cal. based on the gaussian anzats

POSITIVE parity

\checkmark correlation energy is about 3 MeV

${ }^{16} \mathrm{O}$ Positive-parity states

Excitation energies are significantly lower than AMD.

1p1h excitations
\checkmark particle-hole excitation is good agreement with experimental values

${ }^{20} \mathrm{Ne}$: Positive-parity states

- Well reproduce $\mathrm{B}(\mathrm{E} 2)$ values
- Too large moment of inertia

${ }^{20} \mathrm{Ne}:$ Negative-parity states

Computational cost of finite range interaction

■ Skyrme interaction

$$
\begin{aligned}
& \langle\Phi| \widehat{V_{t 0}^{F}}|\Phi\rangle=-\frac{t_{0}}{2} x_{0} \sum_{i, j}\left\langle\phi_{i} \phi_{j}\right| \delta\left(\vec{r}_{1}-\vec{r}_{2}\right) \hat{P}_{r} \hat{P}_{\sigma} \hat{r}_{\tau}\left|\phi_{i} \phi_{j}\right\rangle \\
& =-\frac{t_{0}}{2} x_{0} \sum_{\tau} \int d \vec{r} \rho(\vec{r})^{2} \quad \rho(\vec{r})=\sum_{i, \sigma} \phi_{i}^{*}(\vec{r}, \sigma) \phi_{i}(\vec{r}, \sigma)
\end{aligned}
$$

Computational cost : $N_{x}^{3} \times \underline{N_{i}}$

■ Gogny interaction

$$
\begin{array}{r}
\langle\Phi| \widehat{V_{W_{l}}^{F}}|\Phi\rangle=-\frac{W_{l}}{2} \sum_{\tau} \int d \vec{r} \int d \vec{r}^{\prime} \rho\left(\vec{r} \sigma, \vec{r}^{\prime} \sigma^{\prime}\right) \rho\left(\vec{r}^{\prime} \sigma^{\prime}, \vec{r} \sigma\right) \exp \left\{-\left(\vec{r}-\vec{r}^{\prime}\right)^{2} / \mu_{l}^{2}\right\} \\
\rho\left(\vec{r} \sigma, \vec{r}^{\prime} \sigma^{\prime}\right) \equiv \sum_{i, \sigma} \phi_{i}^{*}(\vec{r}, \sigma) \phi_{i}\left(\vec{r}^{\prime}, \sigma^{\prime}\right) \quad \text { Computational cost : } N_{x}^{6} \times N_{i}
\end{array}
$$

\checkmark Same scaling of orbit as the case of Skyrme interaction
\checkmark scaling of space is power of two

Method 1: finite spherical lattice

W_{l} Fock term

$$
\begin{gathered}
V_{W_{l}}^{F}=-\frac{W_{l}}{2} \sum_{\tau} \int d \vec{r} \int d \vec{r}^{\prime} \rho\left(\vec{r} \sigma, \vec{r}^{\prime} \sigma^{\prime}\right) \rho\left(\vec{r}^{\prime} \sigma^{\prime}, \vec{r} \sigma\right) \exp \left\{-\left(\vec{r}-\vec{r}^{\prime}\right)^{2} / \mu_{l}^{2}\right\} \\
\rho\left(\vec{r} \sigma, \vec{r}^{\prime} \sigma^{\prime}\right) \equiv \sum_{i, \sigma} \phi_{i}^{*}(\vec{r}, \sigma) \underline{\phi_{i}\left(\vec{r}^{\prime}, \sigma^{\prime}\right)}
\end{gathered}
$$

The range of Gogny interaction is about 4 fm .
it is sufficient to integrate r^{\prime} inside 4fm sphere.
Numerical cost : $N_{x}^{3} \times M \times N_{i}$
cf. Skyrme interaction

$$
N_{x}^{3} \times N_{i}
$$

\checkmark Same scaling as the case of Skyrme interaction, except M

positive parity

\checkmark Energy spectrum is almost same

- Complete low-lying spectroscopy with the Skyrme Hamiltonian
- Capable of describing various excited states in a unified way

Problems

- $2^{\text {nd }} 0^{+}$state in ${ }^{16} \mathrm{O}$
- Energy too high by about 3 MeV
- B(E2) Underestimated
- Center of mass? Weak-coupling phenomena?
- Moment of inertia of ${ }^{20} \mathrm{Ne}$
- Too large
- Pairing?
- Hoyle state in ${ }^{12} \mathrm{C}$
- Too small radius? Effect of the spin-orbit interaction?

Future issues

- Coordinate-space calculation with finite-range interaction
- Reaction studies

