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Background ~ GT Quenching Problem ~

C. Gaarde, NPA396(1983) p.127

Gamow-Teller (GT) Strength up to E*=30 MeV

1. Δ-h configuration
2. multi particle-multi hole configuration

Two causes which might produce the quenching
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β-delayed Neutron Branching Ratio
I.N.Borzov, NPA777, 645(2006)

Main Problem causing the difference 
may be “Spreading Width.”
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Background ~ β-delayed Neutron ~

3
Difference between Theory & Exp.

Theory can reproduce β Half-lives …
FRDM+QRPA, RHB+QRPA, HFB+QRPA



Background ~ Theoretical Works ~

◆Second RPA with G-matrix obtained by Bonn potential (HM3A)
70-75% of Sum-rule in E*< ~20 MeV for 48Ca & 90Zr S. Drozdz, et al., PLB166, 18 (1986)

Does really proton-neutron STDA and SRPA work well? 

◆1p1h RPA and TDA with Skyrme force

80-88% of Sum-rule in E*<20 MeV for 48Ca
◆2p2h TDA (STDA) with Skyrme

96-99% of sum-rule found in E*<20 MeV

FM, PRC 93, 044319 (2016)

◆Perturbative calculation 
About 50 % of Sum-rule for 90Zr.

G.F. Bertsch and I. Hamamoto, PRC26, 1323 (1982).
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We adopt the Lipkin-Meshkov-Glick (LMG) Model
(enable to compare the model with exact solution)

To confirm reliability of proton-neutron STDA & SRPA
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1) proton-neutron QRPA in SO(5) group, 
J. G. Hirsch et al., PRC56, 199 (1997)

2) proton-neutron RPA in SU(2) x SU(2) group, 
S. Stoica et al., PRC64, 017303 (2001)

3) SRPA in SU(3) group, 
D. Gambacurta, PRC73, 024319 (2006)

Several Examples:

proton neutron

proton neutron



Formalism

Neutron Proton

𝐾𝐾𝑖𝑖𝑖𝑖 = �
𝑚𝑚

𝑎𝑎𝑖𝑖𝑖𝑖
† 𝑎𝑎𝑗𝑗𝑗𝑗−𝜖𝜖/2

𝜖𝜖/2 𝐾𝐾𝑖𝑖𝑖𝑖 , 𝐾𝐾𝑘𝑘𝑘𝑘 = 𝛿𝛿𝑘𝑘𝑘𝑘𝐾𝐾𝑖𝑖𝑖𝑖 − 𝛿𝛿𝑖𝑖𝑖𝑖𝐾𝐾𝑘𝑘𝑘𝑘,

Commutation Relation

−𝜖𝜖/2

𝜖𝜖/2

where
#0 #1

#2 #3

• #0 & #1 states are fully occupied by neutron and proton.
• #0 & #2 states are assigned to neutron low and upper states.
• #1 & #3 states are assigned to proton low and upper states, respectively.

pnSRPA and pnSTDA are Investigated by LMG model in SU(4) group

𝐾𝐾𝑧𝑧 ≡�
𝑖𝑖

𝐾𝐾𝑖𝑖𝑖𝑖
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Levels 

Phonon Operator 1p1h
2p2h 𝜃𝜃+ = (𝐾𝐾30 + 𝐾𝐾21)(𝐾𝐾20 + 𝐾𝐾31)

Θ+ = 𝐾𝐾30 + 𝐾𝐾21



𝐻𝐻 = �
𝑖𝑖

𝑒𝑒𝑖𝑖𝐾𝐾𝑖𝑖𝑖𝑖 + 𝑉𝑉0 𝐾𝐾21𝐾𝐾12 + 𝐾𝐾30𝐾𝐾03 + 𝑉𝑉1 2𝐾𝐾21𝐾𝐾30 + 2𝐾𝐾12𝐾𝐾30

Model Hamiltonian

p-pp-h
+𝑉𝑉2 𝐾𝐾30𝐾𝐾23 + 𝐾𝐾21𝐾𝐾32 + 𝐾𝐾30𝐾𝐾01 + 𝐾𝐾21𝐾𝐾10 + 𝑐𝑐. 𝑐𝑐 +𝑉𝑉3 𝐾𝐾23𝐾𝐾32

3p-1h & 1p-3h

Only 𝜏𝜏+𝜏𝜏−, 𝜏𝜏−𝜏𝜏+ channels are considered in two-body interaction

| ⟩Φ = �
𝛼𝛼,𝛽𝛽,𝛾𝛾,𝛿𝛿

𝐶𝐶𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼 | �𝑁𝑁𝑛𝑛 − 𝛽𝛽 − 𝛾𝛾,𝑁𝑁𝑝𝑝 − 𝛼𝛼 − 𝛿𝛿, 𝛼𝛼 + 𝛾𝛾, 𝛽𝛽 + 𝛿𝛿

Exact Wave Function

𝐶𝐶𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼 are derived from diagonalization of 𝐻𝐻 with | ⟩Φ
= �

𝛼𝛼,𝛽𝛽,𝛾𝛾,𝛿𝛿

𝐶𝐶𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼 𝐾𝐾21
𝛼𝛼
𝐾𝐾30

𝛽𝛽
𝐾𝐾20

𝛾𝛾
𝐾𝐾31

𝛿𝛿
⟩|𝐻𝐻𝐻𝐻

Dimension to be solved ∝ 𝑵𝑵𝟒𝟒

4p

𝑉𝑉1 = 𝜅𝜅𝜅𝜅/𝑁𝑁𝑉𝑉0 = 0.2𝜖𝜖/𝑁𝑁 𝑁𝑁 = 𝑁𝑁𝑛𝑛 + 𝑁𝑁𝑝𝑝𝑉𝑉2 = −𝜅𝜅𝜅𝜅/(5𝑁𝑁) 𝑉𝑉3 = 𝜅𝜅𝜅𝜅/(25𝑁𝑁)
We will see the excitation energy and transition strength as a function of 𝜅𝜅

--- Model parameters ---
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𝑄𝑄† =
𝑋𝑋Θ+ − 𝑌𝑌Θ−

𝐻𝐻𝐻𝐻|[Θ−, Θ+]|𝐻𝐻𝐻𝐻

Formalism

𝒜𝒜 ℬ
ℬ∗ 𝒜𝒜∗

𝒳𝒳
𝒴𝒴 = ℏ𝜔𝜔

𝒢𝒢 0
0 −𝒢𝒢∗

𝒳𝒳
𝒴𝒴

proton neutron RPA

𝑄𝑄 ⟩|𝑅𝑅𝑅𝑅𝑅𝑅 = 0

RPA ground state

SRPA Equation

𝐴𝐴 𝐵𝐵
𝐵𝐵∗ 𝐴𝐴∗

𝑋𝑋
𝑌𝑌 = ℏ𝜔𝜔 𝐺𝐺 0

0 −𝐺𝐺∗
𝑋𝑋
𝑌𝑌

D. Gambacurta, PRC73, 024319 (2006)

𝒜𝒜 = 𝐴𝐴 𝐴𝐴12
𝐴𝐴21 𝐴𝐴22

ℬ = 𝐵𝐵 0
0 0

𝑄𝑄† =
𝑋𝑋Θ+ − 𝑌𝑌Θ−

𝐻𝐻𝐻𝐻|[Θ−, Θ+]|𝐻𝐻𝐻𝐻
+

𝒳𝒳𝜃𝜃+ − 𝒴𝒴𝜃𝜃−

𝐻𝐻𝐻𝐻|[𝜃𝜃−, 𝜃𝜃+]|𝐻𝐻𝐻𝐻

⟩|𝑅𝑅𝑅𝑅𝑅𝑅 ⇒ ⟩|𝐻𝐻𝐻𝐻

proton neutron SRPA

𝑀𝑀− = 𝜒𝜒 �
𝑚𝑚𝑚𝑚𝑚

𝑎𝑎3𝑚𝑚
† 𝑎𝑎0𝑚𝑚𝑚

Transition Operator

𝑀𝑀+ = 𝜒𝜒 �
𝑚𝑚𝑚𝑚𝑚

𝑎𝑎2𝑚𝑚
† 𝑎𝑎1𝑚𝑚𝑚

𝛽𝛽−𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝛽𝛽+𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
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RPA Equation



Result: Excitation Energy

1. At small κ, RPA, SRPA, STDA are in a good agreement with the exact. 
2. For 1st Excitation energy, RPA & SRPA are close.
3. For 2nd Excitation energy, SRPA & STDA are close.
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1st Excited State

2nd Excited State

Nn=Np=5 Nn=Np=10



Result: Transition Strength of β-

1. For T0, RPA and SRPA work well up to κ=1.5.
2. For T1, SRPA works reasonably up to κ=1.5.
3. For both T0 and T1, STDA shows a large deviation from the 
exact from a small κ.

Parent

Daughter
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T0 of 1st

Excited State

T1 of 2nd

Excited State

Nn=Np=5 Nn=Np=10

T1

T0

STDA may underestimates Quenching effect
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1) SRPA takes into account ground state correlation to some extent, 
which STDA doesn’t. 

4) But we have used zero-range force in STDA. We might have used a 
large κ??  Further analysis is in progress. 

2) The same difference is 
obtained between RPA and TDA 

Nn=Np=5

3) In the charge exchange channel, the ground state correlation generally 
doesn’t play a significant role. Namely, we usually see results at small κ in a 
realistic nucleus (see Next Slide)



Result: 120Sn Fermi Transision

If ground state significantly differs from HF state, TDA shows different 
distribution from RPA. 12

Volume type pairing
Vn=230 MeV fm^-3

Volume type pairing
Vn=400 MeV fm^-3



Summary

2) SRPA seems to work well as compared the exact solution.
Higher correlation is required ? or we cannot exclude a contribution 
of Δ-h coupling to explain the quenching problem.

Investigate proton-neutron SRPA & STDA with LMG Model in 
SU(4) group
1) At small κ, SRPA & STDA work well for excited state
But, STDA is now accurate enough for transition strength
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This might be one of the factors producing difference SRPA and 
STDA calculations on the GT quenching effect.
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