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Lattice chiral effective field theory 
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Review: D.L, Prog. Part. Nucl. Phys. 63 117-154 (2009) 
TALENT summer school lectures:  qmc2016.wordpress.ncsu.edu 
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Euclidean time projection 



We can write exponentials of the interaction using a Gaussian integral 
identity 

We remove the interaction between nucleons and replace it with the 
interactions of each nucleon with a background field. 
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Auxiliary field method 
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Adiabatic projection method 

Strategy is to divide the problem into two parts.  In the first part, we 
use Euclidean time projection and lattice Monte Carlo to derive an ab 
initio low-energy cluster Hamiltonian, called the adiabatic Hamiltonian.   

In the second part, we use the adiabatic Hamiltonian to compute 
scattering phase shifts or reaction amplitudes. 
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The adiabatic projection method a first principles method for scattering 
and reactions.  It computes enough scattering information to construct 
an effective Hamiltonian. 
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Use projection Monte Carlo to propagate cluster wavefunctions in 
Euclidean time to form dressed cluster states 
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Evaluate matrix elements of the full microscopic Hamiltonian with 
respect to the dressed cluster states, 

Since the dressed cluster states are in general not orthogonal, we  
construct a norm matrix given by the inner product 



The adiabatic Hamiltonian is defined by the matrix product 

As we increase the projection time, the adiabatic Hamiltonian exactly 
reproduces the low-energy spectrum of the full microscopic Hamiltonian.  
We can read off the scattering phase shifts for the asymptotic long-
distance properties of the scattering wave functions. 

Distortion and polarization of the nuclear wave functions are 
automatically produced by the Euclidean time projection. 
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Rokash, Pine, Elhatisari, D.L., Epelbaum, Krebs, PRC 106, 054612, 2015 
Elhatisari, D.L., PRC 90, 064001, 2014 
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We present ab initio results for alpha-alpha scattering up to NNLO 
with lattice spacing 1.97 fm. 

Using the adiabatic projection method, we performed lattice simulations 
for the S-wave and D-wave channels. 

Elhatisari, D.L., Rupak, Epelbaum, Krebs, Lähde, Luu, Meißner, Nature 528, 111 (2015) 
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S-wave scattering 
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D-wave scattering 
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Unfortunately there is no algorithm available for ab initio auxiliary field 
Monte Carlo simulations to determine the density distribution of particles 
relative to the center of mass.  The problem is that the particle wave 
functions in the auxiliary field simulation are a superposition of many 
values for the center of mass. 



Pinhole algorithm 

Consider the density operator for nucleon with spin i and isospin j 

We construct the normal-ordered A-body density operator 

In the A-particle subspace, we have the identity 
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Elhatisari, Epelbaum, Krebs, Lähde, D.L., Li, Lu, Luu, Meißner, Rupak, in progress 

In the simulations we do Monte Carlo sampling of the amplitude 
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Metropolis updates of pinholes 

hybrid Monte Carlo  
updates of auxiliary/pion fields 
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Elhatisari, Epelbaum, Krebs, Lähde, D.L., Li, Lu, Luu, Meißner, Rupak, in progress 



Preliminary 
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Pinhole algorithm will be used to calculate density distributions, matrix 
elements of electric and magnetic multipole operators, form factors, and 
radiative capture reactions using the adiabatic projection method. 

Can also be used to measure more complicated density correlations such as 
nuclear clustering.  Currently working on a three-dimensional map of alpha 
clusters in the Hoyle state of 12C. 
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Elhatisari, Epelbaum, Krebs, Lähde, D.L., Li, Lu, Luu, Meißner, Rupak, in progress 



20	

Interaction A (LO + Coulomb) 

Nonlocal short-range interactions 
One-pion exchange interaction  

(+ Coulomb interaction) 

Interaction B (LO + Coulomb) 

Nonlocal short-range interactions 
Local short-range interactions 
One-pion exchange interaction  

(+ Coulomb interaction) 

Nuclear binding near a quantum phase transition 

Elhatisari, Li, Rokash, Alarcon, Du, Klein, Lu, Meißner, Epelbaum, Krebs, Lähde, D.L., Rupak, 
PRL 117, 132501 (2016) 
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Ground state energies 

Both interactions significantly reduce the Monte Carlo sign oscillation problem. 
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Bose condensate of alpha particles! 
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Elhatisari, Li, Rokash, Alarcon, Du, Klein, Lu, Meißner, Epelbaum, Krebs, Lähde, D.L., Rupak, 
PRL 117, 132501 (2016) 



Using the interactions A and B, we can define a one-parameter family of 
interactions 

In order to discuss the many-body limit, we turn off the Coulomb interaction 
and explore the zero-temperature phase diagram.   

As a function of λ, there is a quantum phase transition at the point where 
the alpha-alpha scattering length vanishes. The transition is a first-order 
transition from a Bose-condensed gas of alpha particles to a nuclear liquid. 
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A = 20!

A = 16!
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A = 8!

λ	
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Unfortunately so far lattice simulations have mostly been restricted to 
nuclei with N = Z due to Monte Carlo sign oscillations. 



Lattice chiral EFT interactions revisited 

With a better understanding of the connection between nuclear forces and 
nuclear structure, we are developing lattice chiral EFT interactions which 
should have better order-by-order convergence for a wide range of nuclear 
masses.  We also reduce the Monte Carlo sign oscillations so that larger 
neutron- and proton-rich nuclei can be simulated. 

Elhatisari, Epelbaum, Krebs, Lähde, D.L., Li, Lu, Luu, Meißner, Rupak, in progress 
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We are currently coding the NN interactions up to order Q4 and the NNN 
interaction up to order Q3, with a planned extension to Q4.  But the  
results using only LO with Coulomb already look quite promising.  At the 
very least, the additional corrections needed appear to be well within the 
domain of applicability of perturbation theory.   
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Preliminary 
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Summary and outlook 

These are exciting times for ab initio nuclear theory.  In lattice EFT, we have 
new projects in motion which are pushing the theoretical and computational 
frontiers beyond what was previously possible. 

One recent development is the adiabiatic projection method for scattering  
and reactions.  Another new development is the pinhole method for 
calculating A-body densities with applications to density distributions, matrix 
elements of electric and magnetic multipole operators, form factors, and 
radiative capture reactions.  

Another development is our improved understanding of the connection 
between nuclear forces and nuclear structure.  This has led to a more efficient 
set of lattice chiral EFT interactions that should have better order-by-order 
convergence for a wide range of nuclear masses and also reduce the Monte 
Carlo sign oscillations. 


