Effects of pairing correlation on low-energy s-wave scattering in neutron-rich nuclei

Yoshihiko Kobayashi and Masayuki Matsuo Niigata University, Japan

Background

- Pairing correlation influences strongly low-lying excitation mode in weakly bound nuclei.
- Quasi-particle resonance (Belyaev et.al. 1987) is an characteristic phenomenon caused by the pairing correlation.

Purpose of present study

- > We intend to disclose novel features of the q.p. resonance.
- Superfluid nucleus plus an unbound nucleon (is treated as an unbound quasi-particle state built on a pair-correlated nucleus).

Numerical example: s-wave resonance in (²⁰C + n)*=²¹C*

Pairing correlation influences the continuum

 Many nuclei with open-shell configuration have superfluidity generated by the pairing correlation.

Figures are taken from J. Meng, et al., Prog. Part. Nucl. Phys. 57, 470 (2006)

- The pairing correlation causes configuration mixing
 among bound orbits in well bound nuclei.
 - $\lambda \sim 8 \text{ MeV}$
 - involving both bound and unbound (continuum) orbits
 in weakly bound nuclei.
 λ~0-1 MeV

Nucleon in continuum is influenced by pairing

Figures is taken from J. Meng, et al., Prog. Part. Nucl. Phys. 57, 470 (2006)

 We focus on low-energy s-wave scattering in neutronrich nuclei with the pairing correlation.

 Low angular momentum wave (s and p) can approach nuclei easily due to no or small centrifugal barriers.
 →main contributors in halo formation and capture phenomena

Bogoliubov equation and quasi-particle resonance

 Hartree-Fock-Bogoliubov equation for the coupled singleparticle motion (hole & particle components)

Boundary condition and numerical model

Scattering boundary condition for the quasi-particle

$$\begin{pmatrix}
\frac{1}{r} \begin{pmatrix} u_{lj}(r) \\ v_{lj}(r) \end{pmatrix} = C \begin{pmatrix} \cos \delta_{lj} j_l(k_1 r) - \sin \delta_{lj} n_l(k_1 r) \\ Dh_l^{(1)}(i\kappa_2 r) \end{pmatrix} \xrightarrow[r \to \infty]{} C \begin{pmatrix} \frac{\sin \left(k_1 r - \frac{l\pi}{2} + \delta_{lj}\right)}{k_1 r} \\ 0 \end{pmatrix} \\
k_1 = \sqrt{\frac{2m(\lambda + E)}{\hbar^2}}, \quad \kappa_2 = \sqrt{-\frac{2m(\lambda - E)}{\hbar^2}} \quad C = \sqrt{\frac{2mk_1}{\hbar^2 \pi}} \quad \text{S. T. Belyaev et al., Sov. J. Nucl. Phys. 45 783 (1987)} \\
\text{M. Grasso et al., Phys. Rev. C 64 064321 (2001)} \\
\text{I. Hamamoto et al., Phys. Rev. C 68 034312 (2003)}$$

• Phase shift, elastic cross section and S-matrix. $\sigma_{lj} = \frac{4\pi}{k_1^2} \left(j + \frac{1}{2} \right) \sin^2 \delta_{lj}$

Numerical model

Mean-field potential $U_{lj}(r)$: Woods-Saxon potential

A. Bohr and B. R. Mottelson, Nuclear Structure

Pair potential $\Delta(r)$: Woods-Saxon form

$$U_{lj}(r) = \left[V_0 + (\vec{l} \cdot \vec{s})V_{SO}\frac{r_0^2}{r}\frac{d}{dr}\right]f_{WS}(r) \qquad \Delta(r) = \Delta_0 f_{WS}(r)$$

$$f_{WS}(r) = \left[1 + \exp\left(\frac{r-R}{a}\right)\right]^{-1}$$

Numerical example

: s-wave resonance in $(^{20}C + n)^* = ^{21}C^*$

Single-neutron elastic scattering on ²⁰C: (²⁰C+n)*

 Low energy s-wave scattering on ²⁰C: (²⁰C+n)*=²¹C*

2s_{1/2} orbit is located around the continuum threshold in ²⁰C

- 21C* is subsystem of 22C.
- Weakly bound 2s_{1/2} orbit in the Woods-Saxon potential (↓).

► 19 7.22s	Ne- 20 90.48	Ne- 21 0.27	Ne- 22 9.25	Ne- 23 37.24s	Ne- 24 3.38m	Ne- 25 602ms	Ne- 26 197ms	Ne- 27 31.5ms	Ne- 28 20ms	Ne- 14.8
- 18 .830h	F-19 100	F- 20 11.163s	F-21 4.158s	F- 22 4.23s	F- 23 2.23s	F- 24 390ms	F- 25 80ms	F-26 9.7ms	F- 27 5.0ms	F- 2
- 17 0.038	0-18 0.205	0-19 26.88s	O-20 13.51s	0-21 3.42s	0-22 2.25s	0 - 23 97ms	0 - 24 65ms	0 - 25 2.8E-21s	O-26 4.5ps	
- 16 7.13s	N - 17 4.173s	N - 18 619ms	N-19 271ms	N - 20 130ms	N - 21 83.0ms	N - 22 24ms	N - 23 14.1ms			
- 15 .449s	C - 16 747ms	C - 17 193ms	C - 18 92ms	C - 19 49ms	C - 20 14ms		C - 22 6.1ms			
- 14 2.5ms	B - 15 9.93ms	B - 16	B - 17 5.08ms	B - 18	B - 19 2.92ms					
⊢ 13 0E-21s	Be- 14 4.84ms	Be 15	Be- 16 6.5E-22s			N=	=14			
- 12	LI- 13 3.6E-21s					www	V Chart o	of the Nu	clides 20	14

²²C is an 2 neutron s-wave halo nucleus

W. Horiuchi and Y. Suzuki, Phys. Rev. C 89, 034607 (2006).K. Tanaka et al., Phys. Rev. Lett. 104, 062701 (2010).Y. Togano et al., Phys. Lett. B 761, 412 (2016) etc...

²⁰C has 2s_{1/2} component

Y. Togano et al., Phys. Lett. B 761, 412 (2016)

$\sigma_{s1/2}$ and $\delta_{s1/2}$ are depend on the pairing correlation

Low-energy effective range formula does not work

• We extract the scattering length (a) and the effective range (r_{eff}) from calculated phase shift (δ).

$k \cot \delta \cong -\frac{1}{a} + \frac{1}{2}k^2r_{\text{eff}}$	$k = k_1 = \sqrt{\frac{2m(\lambda + E)}{\hbar^2}}$				
$\begin{bmatrix} 2 \\ \overline{\Delta} = 0.0 \text{MeV} \end{bmatrix}$	∆ [MeV]	1/a [fm ⁻¹]	$r_{ m eff}$ [fm]		
1.3 Å=2.0MeV 1 Å=3.0MeV Å=4.0MeV	0.0	0.0790	5.373		
0.5 $\overline{\Delta}$ =5.0MeV	1.0	0.00825	-1.478		
-0.5	2.0	-0.9279	-109.617		
-1 λ =-0.23MeV	3.0	0.3160	-69.521		
-1.5	4.0	0.3018	-14.192		
0 0.2 0.4 0.6 0.8 1 Energy: ε=E+λ [MeV]	5.0	0.2862	-5.711		

The sign of scattering length and effective range is strange.
The effective range becomes negative.

beyond the low-energy effective formula

"Additional" S-matrix poles are emerged by pairing

2500

2000

1500

1000

500

⊼=0.0MeV

⊼=1.5MeV

s wave

δV₀=0.0MeV

λ=-0.230MeV

 $\sigma_{s1/2}$

- S-matrix poles are calculated in order to understand the behavior of $\sigma_{s1/2}(\Delta)$.
- $\overline{\Delta}$ causes continuum coupling. ("additional" poles emerge in $Im(k_1) < 0$.)

• The pairing dependence of elastic cross sections $\sigma_{s1/2}(\Delta)$ can be described by the "additional" poles qualitatively.

We try to extract pole contribution with following eqs.

$$S(k) \sim \frac{k - \overline{k}_b^*}{k - \overline{k}_b} \cdot \frac{k - \overline{k}_r^*}{k - \overline{k}_r} \cdot \frac{k - \overline{k}_{ar}^*}{k - \overline{k}_{ar}} \longrightarrow \sigma(k) = \frac{\pi}{k^2} |S(k) - 1|^2$$

We try to extract pole contribution with following eqs.

$$S(k) \sim \frac{k - \bar{k}_{b}^{*}}{k - \bar{k}_{b}} \frac{k - \bar{k}_{r}^{*}}{k - \bar{k}_{r}} \cdot \frac{k - \bar{k}_{ar}^{*}}{k - \bar{k}_{ar}} \longrightarrow \sigma(k) = \frac{\pi}{k^{2}} |S(k) - 1|^{2}$$

$$\overline{k}_{b} = 0.166i \quad \overline{k}_{r} = 0.0719 - 0.0473i \qquad \delta_{bg} = 0$$

$$\overline{k}_{ar} = -0.0719 - 0.0473i \qquad S^{*}(k^{*})S(k) = 1$$

$$\overline{\Delta} = 1.5 \text{ MeV} \xrightarrow{2500} \qquad \overline{\sigma_{s1/2}} \xrightarrow{calc.} \xrightarrow{bound} \xrightarrow{calc.} \xrightarrow{calc.} \xrightarrow{bound} \xrightarrow{calc.} \xrightarrow{calc.} \xrightarrow{calc.} \xrightarrow{bound} \xrightarrow{calc.} \xrightarrow{calc.} \xrightarrow{bound} \xrightarrow{calc.} \xrightarrow{calc$$

We try to extract pole contribution with following eqs.

• We try to extract pole contribution with following eqs.

Conclusion

- The pairing correlation effects on the scattering length (a) and the effective range (r_{eff}) cannot be described by the low-energy effective range formula.
- Pairing dependence of elastic cross section is understood by character of "additional" S-matrix poles.
- Scattering on superfluid nucleus which has weakly bound s orbit can be Virtual state-like and Resonance-like.

