Supercomputer Simulations of Structure Formation in the Universe

Tomoaki Ishiyama

University of Tsukuba (Kobe satellite)

Cosmological simulation

Increase the number of particles

- Enable to simulate larger volume
 - Form rare objects
 - Improve statistics
- Enable to increase mass resolution
 - Observe finer structures , we have not ever reached

World's fourth fastest supercomputer (Nov 2013)

Supercomputers!

Both are crucial for understanding our

Scaling of parallel computing

- We hope that *n* times CPUs enable to
 - Increase the number of particles by a factor of *n* (weak scaling)
 - Accelerate simulations by a factor of *n* (strong scaling)
- Just dream. Since there is communication.
 - Gravity is the long-range force
 - We can not imagine that Gadget-2 shows good scaling on > 1000 parallel
- But we want to increase the number of particles and calculate faster

Massively Parallel N-body code: GreeM

• **GRAPE** TreePM

- Dynamic domain decomposition
- Sophisticated load balancer
- Novel communication algorithm for all-to-all communication
- Highly optimized gravity kernel with handy SIMD
 - Utilize Phantom-GRAPE (Nitadori+2006, Tanikawa+2012, 2013)
- Flat MPI or MPI+OpenMP
- 2-10 times faster than Gadget-2

Ishiyama+ 2009, 2012

Based on TreePM code (Yoshikawa and Fukushige, 2005) for small (~10 nodes) GRAPE clusters

Highlight results Performance results on K computer

Ishiyama et al. 2012 (arXiv: 1211:4406), SC12 Gordon Bell Prize Winner • Scalability (2048³ - 10240³)

- Excellent strong scaling
- 10240³ simulation is well scaled from 24576 to 82944 (full) nodes of K computer
- Performance (12600³)

 The average performance on full system is ~5.8Pflops,

~55% of the peak speed

Comparison with Gadget-2

- 1024³, 320Mpc/h, 512CPU cores
 - GreeM 20763 sec, Gadget-2 44752 sec
- 512³, 1Gpc/h, 256CPU cores
 - GreeM 1678 sec, Gadget-2 3577 sec
- 512³, 21Mpc/h, 256CPU cores
 - GreeM 10756 sec, Gadget-2 62005 sec

Our code can perform cosmological simulations 2-10 times faster than Gadget-2

Application 1: Structures of Dark Matter Microhalos

Based on Ishiyama, Makino, Ebisuzaki, 2010, ApJL Ishiyama, 2014 submitted to ApJ

Smallest Halo (Microhalo)

- Smallest halo : ~10⁻⁶ Msun (earth mass),
 - if dark matter is the neutralino of 100GeV-1TeV

(Zybin+1999, Hofmann+2001, Green+2004, Loeb & Zaldarriaga 2005, Berezinsky+ 2003, 2008)

Free streaming damping

Tegmark et al. 2004

The structures of the Milky Way system

Dwarf Galaxy

- Myriad subhalos (10⁻⁶ ~ 10¹⁰ solar mass)
 - dn/dm \propto m^{-2 ~ -1.8}
- Where can we observe gamma-ray flux due to dark matter annihilation ?
 - The center of the Milky Way halo ?
 - Dwarf Galaxy ?
 - Microhalos near Sun ?

Flux∝ρ² → Density structures of the halo & subhalos and spatial distribution of subhalos are very important

Solar system

microhalo

Milky Way

Sun

Structures of the smallest microhalos

- Cosmological N-body simulations only for microhalos (z=31)
 - #particles 1024³
- Nature of microhalos
 - mass ~10⁻⁶ Msun
 - size ~10⁻² pc
 - velocity dispersion ~1m/s

Ishiyama+, 2010, ApJL, 723, L195

microhalo

large halo

Structures of the smallest microhalos

- Cosmological N-body simulations only for microhalos (z=31)
 - #particles 1024³
- Nature of microhalos
 - mass ~10⁻⁶ Msun
 - size ~10⁻² pc
 - velocity dispersion ~1m/s

Ishiyama+, 2010, ApJL, 723, L195

Estimated Gamma-ray map

- Emissions from microhalos only
- Galactic center is the brightest source
- Individual microhalos nearby can be observed as point sources
 - 0.2 deg/year proper motion
- They might be too dim to be observed by Fermi

 $\log Flux [photons m^{-2} s^{-1} sr^{-1}]$

New large simulations

Ishiyama, 2014 submitted to ApJ

Name	N	L(pc)	$arepsilon(\mathrm{pc})$	$m(M_{\odot})$
A_N4096L400	4096^{3}	400.0	2.0×10^{-4}	3.4×10^{-11}
A_N4096L200	4096^{3}	200.0	1.0×10^{-4}	4.3×10^{-12}
B_N2048L200	2048^{3}	200.0	$2.0 imes 10^{-4}$	3.4×10^{-11}

Movie: Takaaki Takeda (4D2U, National Astronomical Observatory of Japan)

Stacked density profiles (z=32)

Shape, concentration (z=32) $\rho(r) = \frac{\rho_0}{(r/r_s)^{\alpha}(1+r/r_s)^{(3-\alpha)}}$

- Larger halo -> shallower cusp
- Concentration does not depend on the halo mass
 - Reflect the fact that the formation epoch does not depend on the mass
 - Rule out single power law fitting functions

Evolution of density profiles

- Not depending on the collapse epoch, profiles of progenitors soon after the collapse are similar to thoes of the smallest halos.
- Cusps are shallowing as the halos grow.

Summary

- We developed massively parallel N-body code
 - ~5.8Pflops is achieved on K computer, which correspond to ~55% of the peak speed
 - We could perform simulations, 2-10 times faster than public codes like Gadget-2
- N>10¹⁰ simulations can first reveal the structures of dark matter halos near the free streaming scale
 - Different structures from larger halos like galatic halos
 - Impact on the dark matter detection experiments
- Next-generation mock galaxy and AGN catalogs
 - Better than Millennium catalogs