Nuclear Physics from Lattice QCD

Takumi Doi (Nishina Center, RIKEN)

- Introduction
- Theoretical framework
- Results at physical quark masses
- Summary / Prospects

The Odyssey from Quarks to Universe

Outline

- Introduction
- Theoretical framework (HAL QCD method)
- Results at physical quark masses
- Summary / Prospects

- S. Aoki, D. Kawai,
- T. Miyamato, K. Sasaki (YITP)
- T. Doi, T. Hatsuda, T. Iritani (RIKEN)
- F. Etminan (Univ. of Birjand)
- S. Gongyo (Univ. of Tours)
- Y. Ikeda, N. Ishii, K. Murano (RCNP)
- T. Inoue (Nihon Univ.)
- H. Nemura (Univ. of Tsukuba)

[HAL QCD method]

• Nambu-Bethe-Salpeter (NBS) wave function

 $\psi(\vec{r}) = \langle 0 | N(\vec{r})N(\vec{0}) | N(\vec{k})N(-\vec{k}); in \rangle$

 $(\nabla^2 + k^2)\psi(\vec{r}) = 0, \quad r > R$

- phase shift at asymptotic region

$$\psi(r) \simeq A \frac{\sin(kr - l\pi/2 + \delta(k))}{kr}$$

Extended to multi-particle systems

M.Luscher, NPB354(1991)531 C.-J.Lin et al., NPB619(2001)467 N.Ishizuka, PoS LAT2009 (2009) 119 CP-PACS Coll., PRD71(2005)094504

S. Aoki et al., PRD88(2013)014036

Consider the wave function at "interacting region"

$$(\nabla^2 + k^2)\psi(\mathbf{r}) = m \int d\mathbf{r'} U(\mathbf{r}, \mathbf{r'})\psi(\mathbf{r'}), \quad \mathbf{r} < R$$

- U(r,r'): faithful to the phase shift by construction

• U(r,r'): E-independent, while non-local in general

- Non-locality \rightarrow derivative expansion

HAL QCD method

Lattice QCD

Lat Baryon Force **NBS** wave func. 100 600 1.2 500 NN wave function $\phi(r)$ 1.0 50 V_C(r) [MeV] 400 0.8 φ(x,y,z=0;¹S_c) 300 1.5 c 0.6 200 1.0 0.4 0.5 -50 100 0.0 0.5 1.0 1.5 2.0 0.2 v[fm] 0 0.0 1.0 1.5 0.0 0.5 2.0 0.5 1.0 1.5 2.0 0.0 r [fm] r [fm] $\left(k^2/m_N - H_0\right)\psi(\vec{r}) = \int d\vec{r}' U(\vec{r},\vec{r}')\psi(\vec{r}')$ $\langle 0|N(\vec{r})N(\vec{0})|N(\vec{k})N(-\vec{k}),in \rangle$ $\psi_{NBS}(\vec{r})$ _ $A_k \sin(kr - l\pi/2 + \delta_l(k))/(kr)$ \sim *E-indep* (& non-local) Potential: (at asymptotic region) Faithful to phase shifts Analog to ... **Phase shifts Phen. Potential** Scattering Exp. 300 ${}^{1}S_{0}$ ¹S₀ channel virtual state 60 200 mid-range attraction V_c (r) [MeV] 0 40

repulsive

Bonn Reid93

AV18

0.5

core

-100

0

 $2\pi, 3\pi, ...$

(σ, ρ, ω, ...)

1.5

1

π

r [fm]

2

2.5

short-range

300

400

repulsion

20

0

-20 0

100

200

 T_{lab} [MeV]

The Challenge in multi-baryons on the lattice

The fate of the direct method (check on NN)

T. Iritani et al. (HAL Coll.) JHEP1610(2016)101 [Talks by S. Aoki & T. Iritani (Fri.)]

<u>Outline</u>

- Introduction
- Theoretical framework
- Results at (almost) physical quark masses w/ HAL method
 - Nuclear forces and Hyperon forces
 - Impact on dense matter
- Summary / Prospects

Lattice QCD Setup

- Nf = 2 + 1 gauge configs
 - clover fermion + Iwasaki gauge
 - V=(8.1fm)⁴, a=0.085fm (1/a = 2.3 GeV)
 - m(pi) ~= 145 MeV, m(K) ~= 525 MeV

- Measurement
 - NN/YN/YY for central/tensor forces in P=(+) (S, D-waves)
 - Unified Contraction Algorithm (UCA) → drastic speedup in calc

Hyperon forces provide precious predictions

<u>S = -2 channel (Coupled Channel)</u>

H-dibaryon (
$$^{1}S_{0}$$
, ΛΛ-ΝΞ-ΣΣ)

NAGARA-event (2001)

 $\Xi^- + {}^{12}\mathrm{C} \rightarrow {}_{\Lambda\Lambda}{}^6\mathrm{He} + {}^4\mathrm{He} + t$

Ξ -hypernuclei

KISO-event (2014) $\Xi^- + {}^{14}N \rightarrow {}_{\Lambda}{}^{10}Be + {}_{\Lambda}{}^{5}He$ B.E. = 4.38(25) MeV

(or 1.11(25) MeV)

<u>H-dibaryon @ Nf=2+1, m_π=146 MeV</u>

[K. Sasaki]

off-diagonal diagonal 300 ΝΞ-ΣΣ -ΛΛ-ΣΣ -ΛΛ-ΝΞ -200 250 200 100 V(r)[MeV] V(r)[MeV] 150 0 100 -100 50 0 -200 -50 1.5 2.5 0 0.5 1 2 3 0.5 2.5 0 3 1.5 2 r[fm] r[fm] octet singlet 27plet 200 $m_{\Sigma\Sigma} = 2380 \text{MeV}$ 100 diagonal in V(r)[MeV] 0 SU(3)-irrep base 120Me\ -100 $m_{N\Xi} = 2260 \text{MeV}$ **Strong Attraction in** 30MeV 1.5 2.5 2 3 flavor-singlet channel r[fm] $m_{\Lambda\Lambda} = \bar{2}230 \mathrm{MeV}$ (400conf x 4rot x 28src, t=11)

$\Lambda\Lambda$, NE (effective) 2x2 coupled channel analysis

NΞ-Potentials [K. Sasaki]

 \iff Ξ -hypernuclei

Is interaction net attractive ? Stay tuned !

(200conf x 4rot x 20src, t=10)

<u>NN system (S = 0)</u>

Impact on dense matter

S=-2 interactions suitable to grasp whole NN/YN/YY interactions

(off-diagonal component is small)

[K. Sasaki] 19

S=-2 interactions suitable to grasp whole NN/YN/YY interactions

We calculate single-particle energy of hyperon in nuclear matter w/ LQCD baryon forces

We fit by

(off-diagonal component neglected)

$$V(r) = a_1 e^{-a_2 r^2} + a_3 e^{-a_4 r^2} + a_5 \left[\left(1 - e^{-a_6 r^2} \right) \frac{e^{-a_7 r}}{r} \right]^2$$
(central)
$$V(r) = a_1 \left(1 - e^{-a_2 r^2} \right)^2 \left(1 + \frac{3}{a_3 r} + \frac{3}{(a_3 r)^2} \right) \frac{e^{-a_3 r}}{r} + a_4 \left(1 - e^{-a_5 r^2} \right)^2 \left(1 + \frac{3}{a_6 r} + \frac{3}{(a_6 r)^2} \right) \frac{e^{-a_6 r}}{r}$$
(tensor)

Brueckner-Hartree-Fock LOBT

• Hyperon single-particle potential

M. Baldo, G.F. Burgio, H.-J. Schulze, Phys. Rev. C58, 3688 (1998)

• YN G-matrix using $V_{S=-1}^{LQCD}$, $M_{N,Y}^{Phys}$, $U_{n,p}^{AV18,BHF}$ and, U_{Y}^{LQCD}

$$Q=0 \begin{bmatrix} G_{(\Lambda n)(\Lambda n)}^{SLJ} & G_{(\Lambda n)(\Sigma^{0}n)} & G_{(\Lambda n)(\Sigma^{0}n)} \\ G_{(\Sigma^{0}n)(\Lambda n)} & G_{(\Sigma^{0}n)(\Sigma^{0}n)} & G_{(\Sigma^{0}n)(\Sigma^{0}p)} \\ G_{(\Sigma^{0}p)(\Lambda n)} & G_{(\Sigma^{0}p)(\Sigma^{0}n)} & G_{(\Sigma^{0}p)(\Sigma^{0}p)} \end{bmatrix} Q=+1 \begin{bmatrix} G_{(\Lambda p)(\Lambda p)}^{SLJ} & G_{(\Lambda p)(\Sigma^{0}p)} & G_{(\Lambda p)(\Sigma^{0}n)} \\ G_{(\Sigma^{0}p)(\Lambda p)} & G_{(\Sigma^{0}p)(\Sigma^{0}p)} & G_{(\Sigma^{0}p)(\Sigma^{0}p)} \\ G_{(\Sigma^{0}n)(\Lambda p)} & G_{(\Sigma^{0}n)(\Sigma^{0}p)} & G_{(\Sigma^{0}n)(\Sigma^{0}n)} \end{bmatrix} Q=+2 \begin{bmatrix} G_{(\Sigma^{0}p)(\Sigma^{0}p)}^{SLJ} & Q=+2 \end{bmatrix} Q$$

$$Q=-1 \begin{bmatrix} G_{(\Sigma^{0}n)(\Sigma^{0}n)}^{SLJ} & Q=+2 \end{bmatrix} Q=+2 \begin{bmatrix} G_{(\Sigma^{0}p)(\Sigma^{0}p)}^{SLJ} & 17 \end{bmatrix} D$$

Hyperon single-particle potentials

- obtained by using YN,YY forces form QCD.
- Results are compatible with experimental suggestion.

 $\begin{array}{ll} U^{\mathsf{Exp}}_{\Lambda}(0)\simeq -\,30\,, & U_{\Xi}(0)^{\mathsf{Exp}}\simeq -\,10\,, & U^{\mathsf{Exp}}_{\Sigma}(0)\geq +\,20 \quad \text{[MeV]}\\ & \text{attraction} & \text{attraction small} & \text{repulsion} \end{array}$

[T. Inoue] 22

Chemical potentials

- Density dependence of chemical pot. of n and Y in PNM. $\mu_n(\rho) = \frac{k_F^2}{2M} + U_n(\rho; k_F), \quad \mu_Y(\rho) = M_Y - M_N + U_Y(\rho; 0)$
- Hyperon appear as $n \rightarrow Y^0$ if $\mu_n > \mu_{Y^0}$

$$nn \rightarrow pY^{-}$$
 if $2\mu_n > \mu_p + \mu_{Y^{-}}$

Hyperon onset (just for a demonstration)

- First, Σ^- appear at 2.9 ρ_0 . Next, Λ appear at 3.3 ρ_0 .
 - NS matter is not PNM especially at high density.
 - We should compare with more sophisticated μ_n and μ_p .
 - P-wave YN force may be important at high density.

Hyperon onset (just for a demonstration) $x_p = 3.8\%$ 6.8% 8.9% 11% 450 450 "NSM" = "NSM" 400 400 S-wave YN only AV18 NN 350 350 No NNN Σ Preliminar 300 300 μ [MeV] μ [MeV] 250 250 2n-p 2n-p 200 200 150 150 Λ 100 100 50 50 Σ μ_n $2\mu_n - \mu_p$ Ξ $M_N \rightarrow$ 0 0 P [Pn] 2 3 3 ñ 0 P [Pn]

• "NSM" is matter w/ n, p, e, μ under β -eq and Q=0.

<u>Nf=2, mπ=0.76-1.1 GeV</u>

<u>Nf=2+1, m π =0.51 GeV</u>

Magnitude of 3NF is similar for all masses Range of 3NF tend to get longer (?) for m(pi)=0.5GeV

Kernel: ~50% efficiency achieved !

<u>Summary</u>

- Baryon forces: Bridge between particle/nuclear/astro-physics
- HAL QCD method crucial for a reliable calculation
 - Direct method suffers from excited state contaminations
- The 1st LQCD for Baryon Interactions at ~ phys. point
 - m(pi) ~= 145 MeV, L ~= 8fm, 1/a ~= 2.3GeV
 - Central/Tensor forces for NN/YN/YY in P=(+) channel

Nuclear Physics from LQCD New Era is dawning !

- Prospects
 - Exascale computing Era ~ 2020
 - LS-forces, P=(-) channel, 3-baryon forces, etc., & EoS

