Warm-Hot Intergalactic Medium

SIMD Acceleration in Astrophysical Simulations

Center for Computational Sciences

Kohji Yoshikawa

Warm-Hot Intergalactic Medium

- Y. Suto (Univ. of Tokyo)
- H. Kawahara (Univ. of Tokyo)
- S. Sasaki (Tokyo Metro-Univ.)
- T. Ohashi (Tokyo Metro-Univ.)
- N. Yamasaki (JAXA/ISAS)
- K. Mitsuda (JAXA/ISAS)

WHIM as Cosmic Missing Baryons

Many difficulties in detecting the WHIM

very low emission measure due to its low density

so many contaminations such as Galactic emission and CXB.

Detection of WHIM through Absorption Lines

Detection through Emission Lines

Yoshikawa et al. (2003) PASJ, 55, 879

Example of Simulated Spectra

mock observations based on cosmological hydrodynamic simulations

WHIM at the outskirts of clusters and groups of galaxies can be detected with next generation X-ray missions.

Detection of WHIM

Yoshikawa et al. (2004) , PASJ, 56, 939

- Detectability of WHIM in the local universe (r<100Mpc) based on the constrained simulation of the local universe
- We found several sweet spots for the detection of WHIM through emission lines.

Kawahara, KY, et al. (2006), PASJ, 58, 657

- Detectability of WHIM through absorption lines using GRB afterglows.
- Combined analysis of WHIMobs. using both of emission and absorption lines.

Non-equilibrium Ionization States in WHIM

Timescales for Ionizations and recombinations are not short enough

Ionization equilibrium is not achieved

Time evolution of ionization states is investigated in cosmological hydrodynamic simulations

Cosmological N-body + Hydro(SPH) simulation

- ACDM $(\boldsymbol{\Omega_{\mathrm{m}}}{=}0.3,\boldsymbol{\Omega_{\mathrm{A}}}{=}0.7,h{=}0.7,\sigma_{8}{=}1.0)$
- UV/X-ray background radiation
- radiative cooling
- non-equilibrium ionization : H, He, C, N, O, Ne, Mg, Si, Fe

$$\frac{df_{j}}{dt} = \sum_{k=1}^{j-1} S_{j-k,k} f_{k} - \sum_{i=j+1}^{Z+1} S_{i-j,j} f_{j} - \alpha_{j} f_{j} + \alpha_{j+1} f_{j+1}$$

SIMD Acceleration in Astrophysical Simulations

K. Nitadori (Univ. of Tokyo) J. Makino (NAOJ)

SIMD Instructions on Modern CPUs

SIMD = Single Instruction Multiple Data

Simultaneous execution of the same operations on multiple data

SIMD units are usually equipped on modern commodity CPUs

Intel / x86, x86-64 : Streaming SIMD Extension (SSE/SSE2/SSE3/SSSE3)

AMD / x86, x86-64: 3DNow! (Enhanced 3DNow!, 3DNow! Professional), SSE

IBM / PowerPC G4/G5: AltiVec/VMX

Originally developed for 3D graphics and media streaming

We explore the possibility to accelerate computations in astrophysical simulations with the aid of SIMD units / instructions

In this work, **Streaming SIMD Extension** is adopted

Streaming SIMD Extension (SSE)

4 single precision (32bit) data

can be stored in a dedicated 128bit-length register

2 double precision (64bit) data

available operations

add, sub, mul, div, sqrt, inverse sqrt, cast, shuffle, comp, logical ops, horizontal operations

Computing Gravitational Forces using SSE Phantom GRAPE

computing the forces on 4 particles in parallel

Phantom GRAPE

Acceleration of gravitational force calculation using SSE.

emulation of a GRAPE chip with 4 pipelines on commodity CPUs significant speed up achieved with the aid of SSE

480M interaction/sec (18.3Gflops) on a single core of Core 2 Duo (2.4GHz) 30M interaction/sec (1.1Gflops) without SSE

Force shapes of newton's law with cutoff are also supported.
260M interaction/sec on a single core of Core 2 Duo (2.4GHz)

50M interaction/sec without SSE

APIs are compatible with those of GRAPE-5, 6 libraries

SPH Calculations using SSE

$$\rho_i = \sum_{j=0}^{N-1} m_j W(r_{ij}, h_i)$$
$$\rho_i (\nabla \cdot \vec{v}_i) = \sum_{j=0}^{N-1} m_j \vec{v}_{ij} \cdot \nabla W(r_{ij}, h_i)$$

4 interactions are simultaneously computed using SSE.

cycle counts per interaction

	with SSE	w/o SSE	gain
1 st loop	54.9	166	3.03
2 nd loop	81.3	327	4.02