CCS-RIKEN workshop, Dec.12, 2016

An application of the CSM+SVM with the complex-range Gaussian basis function to the four-body resonances

1. Method (CSM, SVM, CG)

2. Application of CSM+SVM+CG to the excited resonances of ⁴He

Niigata University S. Aoyama

S. Aoyama, PTEP, in press.

S

Candidate Resonant Tetraneutron State Populated by the ⁴He(⁸He,⁸Be) Reaction

K. Kisamori,^{1,2} S. Shimoura,¹ H. Miya,^{1,2} S. Michimasa,¹ S. Ota,¹ M. Assie,³ H. Baba,² T. Baba,⁴ D. Beaumel,^{2,3}
M. Dozono,² T. Fujii,^{1,2} N. Fukuda,² S. Go,^{1,2} F. Hammache,³ E. Ideguchi,⁵ N. Inabe,² M. Itoh,⁶ D. Kameda,² S. Kawase,¹
T. Kawabata,⁴ M. Kobayashi,¹ Y. Kondo,^{7,2} T. Kubo,² Y. Kubota,^{1,2} M. Kurata-Nishimura,² C. S. Lee,^{1,2} Y. Maeda,⁸
H. Matsubara,¹² K. Miki,⁵ T. Nishi,^{9,2} S. Noji,¹⁰ S. Sakaguchi,^{11,2} H. Sakai,² Y. Sasamoto,¹ M. Sasano,² H. Sato,²
Y. Shimizu,² A. Stolz,¹⁰ H. Suzuki,² M. Takaki,¹ H. Takeda,² S. Takeuchi,² A. Tamii,⁵ L. Tang,¹ H. Tokieda,¹

M. Tsumura,⁴ T. Uesaka,² K. Yako,¹ Y. Yanagisawa,² R. Yokoyama,¹ and K. Yoshida²

Complex Scaling Method

The complex scaling for the coordinate is described as

Review

S. Aoyama, T. Myo, K. Kato, K.Ikeda, Prog. Theor. Phys. 116(2006).

$$U(heta)oldsymbol{r}=oldsymbol{r}e^{i heta},\qquad U(heta)oldsymbol{p}=oldsymbol{p}e^{-i heta}.$$

The Schrödinger equation is rewritten as

$$egin{aligned} H(heta)U(heta)\Psi&=E(heta)U(heta)\Psi,\ H(heta)\Psi(heta)&=E(heta)\Psi(heta), \end{aligned}$$

where

 $H(\theta) = U(\theta)HU^{-1}(\theta).$

The complex eigenvalue is obtained by the diagonalization of the Hamiltonian matrix.

$$\sum_j C_j \langle \psi_i | H(heta) | \psi_j
angle = E(heta) \sum_j C_j \langle \psi_j | \psi_j
angle,
onumber \ | \Psi(heta)) = \sum_i C_j(E, heta) | \psi_j
angle.$$

According to the ABC-theorem,

J. Aguilar and J. M. Combes, Commun. Math. Phys. 22 (1971). E. Balslev and J. M. Combes, Commun. Math. Phys. 22(1971).

i) The energies of bound states and resonances $(\theta > tan^{-1}(\Gamma/2E_r))$ are not changed by scaling.

ii) The continuum spectra are obtained along 2θ lines, which start at the threshold energies of the sub-systems.

Complex Scaling Method for tetra neutron ⁴n

-5

2

Re(E) (MeV)

8

E.Hiyama, R.Lazauskas, J.Carbonell, M.Kamimura,

Hamiltonian matrix for 4-nucleon systems is estimated as one million! => It's beyond the computational ability of standard super computers.

Stochastic Variational Method

Example for a t+p channel

K. Varga, Y. Suzuki, Y. Ohbayashi, Phys. Rev. C50, 189 (1994)

In order to treat the large model space, we use **SVM** (Stochastic Variational Method).

		Present					Ref.[24]		Exp.
	cluster	E	T	V_N	V_C	R_{rms}	E	R_{rms}	E
		MeV	MeV	MeV	MeV	$_{\rm fm}$	${\rm MeV}$	$_{\mathrm{fm}}$	MeV
7	$t(\frac{1}{2}^{+})$	-8.38	27.24	-35.62	0	1.70	-8.38	1.71	-8.48
15 base 🗲	$h(\frac{1}{2}^{+})$	-7.70	26.73	-35.11	0.67	1.72	-7.71	1.74	-7.72
5 base \longrightarrow	$d(1^{+})$	-2.20	10.49	-12.69	0	1.94	-2.20	1.95	-2.22

[24]Y. Suzuki *et al*. FBS42(2008)33

Computational time is proportional to $N_b X N_b$ (or $N_b X N_b X N_b$ for larger dimension)

Complex-range Gaussian basis function

Oscillating part is introduced to the Gaussian-type basis function.

$$egin{aligned} u_l(a_i,r) &= r^l \exp(-(1+i\omega)a_ir^2), \ u_l^*(a_i,r) &= r^l \exp(-(1-i\omega)a_ir^2). \end{aligned}$$

Kurokawa and Kato, PRC71(2005)

Ohtsubo, Fukushima, Kamimura, Hiyama, PTEP073D02(2013)

The binding energy of triton by using CSM+SVM The bound state solution should not depend on the scaling angle θ . Standard CSM with geometric progression

Precise solution

800 dimension -> 30 dimension

Standard CSM CSM+SVM+CG

Energy Levels of ⁴He

D.R. Tilley, H.R. Weller, G.M. Hale, Nucl Phys A 541(1992).

Hamiltonian and basis function

The Hamiltonian is

$$\widehat{H} = \sum_{i=1}^{4} \widehat{T}_i - \widehat{T}_{\mathrm{cm}} + \sum_{i < j}^{4} \widehat{V}_{ij} + \sum_{i < j}^{4} \widehat{V}_{ij}^C.$$

where \hat{V}_{ij} is the two-nucleon potential (Minnesota), \hat{V}_{ij}^C is the Coulomb potential. The basis function of ⁴He is written as

$$\Psi_{JM} = \sum_{lpha} c_{lpha} \Phi^{lpha}_{JM}(K) + \sum_{eta} d_{eta} \Phi^{eta}_{JM}(H),$$

$$\begin{split} \Phi_{JM}(K) \ &= \ \mathcal{A}\left[\left[\left[\psi_{L_1}^{(1)}(\boldsymbol{x}_1) \psi_{L_2}^{(2)}(\boldsymbol{x}_2) \right]_{L_{12}} \psi_{L_3}^{(3)}(\boldsymbol{x}_3) \right]_L \left[\left[\left[\chi^{(1)} \chi^{(2)} \right]_{S_{12}} \chi^{(3)} \right]_{S_{123}} \chi^{(4)} \right]_S \right]_{JM} \\ & \times \left[\left[\tau^{(1)} \tau^{(2)} \right]_{T_{12}} \tau^{(3)} \right]_{T_{123}M_{123}} \tau_{\frac{1}{2}M_4}^{(4)}, \end{split}$$

$$\Phi_{JM}(H) = \mathcal{A} \left[\left[\left[\psi_{L_1}^{(1)}(\boldsymbol{y}_1) \psi_{L_2}^{(2)}(\boldsymbol{y}_2) \right]_{L_{12}} \psi_{L_3}^{(3)}(\boldsymbol{y}_3) \right]_L \left[\left[\chi^{(1)} \chi^{(2)} \right]_{S_{12}} \left[\chi^{(3)} \chi^{(4)} \right]_{S_{34}} \right]_S \right]_{JM} \times \left[\tau^{(1)} \tau^{(2)} \right]_{T_{12}M_{12}} \left[\tau^{(3)} \tau^{(4)} \right]_{T_{34}M_{34}}.$$

${}^{3}P_{0}$ phase shift with MRM

S. Aoyama, K. Arai, Y. Suzuki, P.Descouvemont, and D. Baye, Few-body Syst. 52(2012).

Complex Eigenvalues of 0^{-} in ⁴He

CSM+SVM

Real Range (RG) Gaussian

Complex Range (GG) Gaussian

 $N_b=15$ for t and ³He $N_b=5$ for deutron

 b_3^{max} =50fm and N=30 for 3N+N b_3^{max} =40fm for N=20 for 2N+2N λ -trajectory of Complex Eigenvalues of 0⁻ in ⁴He

ACCC+CSM S. Aoyama, Phys. Rev. C 68 (2003). S. Aoyama, Phys. Rev. Lett. 89 052501 (2002).

θ -trajectory of Complex Eigenvalues of 0^{-} in ⁴He

Complex Eigenvalues of 0⁺ in ⁴He

λ -trajectory of Complex Eigenvalues of 0⁺ in ⁴He

Summary

CSM+SVM is proposed and applied to the excited resonance of ⁴He (0±).

CSM+SVM with the RG basis function can not reproduce the excited resonance of ⁴He.

CSM+SVM with the CG basis function can reproduce well the excited resonance of ⁴He.

Typical computational time with CSM+SVM is 100 times faster than the conventional CSM(GEM) at least.

Future problem

Systematic investigation of four-nucleon resonances with realistic interactions.