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Introduction



Strategies for nuclear physics from (lattice) QCD
calculate nuclei directly from lattice QCD 

� e�mAt + · · ·

3A quark lines A: atomic number 

Direct method

Hadronic Interactions Takeshi Yamazaki

Ref. [83]. In this work, the binding energies of the 4He and 3He nuclei were calculated in quenched
QCD at mp = 800 MeV, by examining the volume dependence of the energy shift. A serious
computational problem with nuclei calculations is huge number of Wick contraction. For helium
nuclei [83], this problem was overcome by omitting calculations of redundant contractions under
symmetries of interpolating operator, and by utilizing blocks of three quark propagators. Recently,
more efficient calculation methods [84, 85, 86] have been proposed. In this conference a prelimi-
nary result in this direction [87] is reported.

The exploratory study of helium nuclei has been followed by calculations in Nf = 3 QCD at
mp = 810 MeV [20], and 2 + 1 QCD at mp = 510 MeV [19] and mp = 300 MeV [21]. Results
for the binding energies for 4He and 3He nuclei are summarized in Fig. 11. For both the nuclei,
the quenched and Nf = 3 calculations at mp ⇠ 800 MeV give different results. While it might be a
dynamical quark effect, precise understanding is lacking at present. At mp = 300, the lightest pion
explored so far, the binding energy of 4He is roughly consistent with the experiment, while that
for 3He is about three times larger than the experiment. The discrepancy between the lattice and
experimental results might be caused by a large mp in the calculation. Future calculations closer to
the physical mp should tell if this expectation is justified.

In the right panel of Fig. 11 the result from HALQCD method for 4He in Nf = 3 QCD [73],
giving a very small binding energy, is also plotted. Results for 3He is not available from the
HALQCD method.

0 0.2 0.4 0.6 0.8 1

m
π

2
[GeV

2
]

-0.20

-0.16

-0.12

-0.08

-0.04

0.00

experiment

PACS-CS N
f
=0 V

∞
 [83]

HALQCD N
f
=3 [73]

NPLQCD N
f
=3 V

max
 [20]

Yamazaki et al. N
f
=2+1 V

∞
 [19,21]

∆E(
4
He)[GeV]

0 0.2 0.4 0.6 0.8 1

m
π

2
[GeV

2
]

-0.08

-0.06

-0.04

-0.02

0.00

experiment

PACS-CS N
f
=0 V

∞
 [83]

NPLQCD N
f
=3 V

max
 [20]

Yamazaki et al. N
f
=2+1 V

∞
 [19,21]

∆E(
3
He) [GeV]

Figure 11: Binding energies for 4He (left) and 3He (right) channels. Experimental values are also plotted.
V• and Vmax express results in the infinite volume and on the largest volume, respectively.

Let us list some related studies for nuclei. NPLQCD Collaboration calculates magnetic mo-
ments for light nuclei [88] and binding energies for quarkonium-nucleus bound states [89]. HALQCD
Collaboration calculates the binding energy of spin-2 NW bound state [90] and medium-heavy
nuclei [73] from potentials obtained by the HALQCD method. The nuclei calculation has been
extended to theories beyond the standard model. Detmold et al. [91] calculate nuclei of two to
four particles in two-flavor SU(2) gauge theory to explore the importance of nuclear physics in the
strongly-interacting dark matter models.
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Potential method

“potential” binding energy 

phase shift 

(HALQCD method)

+ Schrödinger equation

GNN (r, t) = hN(r, t)N(0, t)N̄(0)N̄(0)i

Talk by T. Doi on 13th

This talk: reliability checks for the direct method using 2-baryon systems

Next talk by Iritani: reliability checks for the potential method
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The present result is consistent, within uncertainties, with the results at m⇡ ⇠ 300 MeV and
m⇡ ⇠ 500 MeV from Refs. [15, 21]. Further LQCD calculations at lighter quark masses are
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FIG. 14: The pion mass dependence of the deuteron binding energy calculated with LQCD. The NPLQCD
anisotropic-clover result is from Ref. [11], the Yamazaki et al. results are from Refs. [15, 21] and the NPLQCD
isotropic-clover results are from this work and Ref. [14]. The black disk corresponds to the experimental
binding energy.

required to quantify the approach to the physical deuteron binding (for related NNEFT work see
Ref. [28]).

B. Scattering in the 3

S

1

-3D
1

Coupled Channels

To recover the S-matrix in the 3
S1-3D1 coupled channels, calculations must be performed that

isolate the phase shifts and mixing angle, �1↵, ✏1 and �1� , defined in eq. (7), from the FV observables
accessible to LQCD calculations. The formalism with which to perform this analysis [51, 58–60]
is an extension of the seminal work of Lüscher [53, 54]. For vanishing total momentum, assuming
that the contribution from �1� , D-waves and higher are negligible, the energies of the T1 irreps are
insensitive to ✏1, as demonstrated in eq. (8). Therefore, the shifts in energies of the two nucleon
states in the T1 irrep for various total momentum from the energy of two free nucleons can be used
to extract �1↵ below the inelastic threshold.

Figure 15 show the e↵ective-k⇤2 plots (Ek2Ps) associated with the first continuum T1 states
in each ensemble, with momentum near k = 2⇡/L. These show the values of the interaction
momentum k

⇤2 extracted from the LQCD correlation functions as a function of Euclidean time.
As with the EMPs, plateau behavior indicates the dominance of a single state. For an arbitrary

FIG. 15: Ek2Ps for the lowest lying continuum 3

S

1

-3D
1

NN states near k

⇤ = 2⇡/L in the L = 24 (left),
L = 32 (center) and L = 48 (right) ensembles, along with fits to the plateau regions.

two-body system, comprised of particles with masses m1 and m2, with zero CoM momentum, the
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TABLE IX: Energy di↵erences between the dineutron and deuteron from fitting to the EMPs shown in
Fig. 22. All di↵erences are consistent with zero, as is their infinite-volume extrapolation.

Ensemble E

nn

� E

deut

(l.u.) E

nn

� E

deut

(MeV)

243 ⇥ 64 +0.0022(16)(28) +3.7(2.8)(4.7)(0.0)

323 ⇥ 96 -0.0014(09)(15) -2.4(1.6)(2.5)

483 ⇥ 96 +0.0027(04)(31) +4.6(0.7)(5.3)

extracted.

1. A Compilation of Dineutron Binding Energies from LQCD

The current calculation of the dineutron binding energy adds to a small number of previous
calculations, a compilation of which is shown in Fig. 23. There does not appear to be a clear
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FIG. 23: The pion-mass dependence of the dineutron binding energy calculated with LQCD. The NPLQCD
anisotropic-clover result is from Ref. [11], the Yamazaki et al. results are from Refs. [15, 21] and the NPLQCD
isotropic-clover results are from this work and Ref. [14]. The black disk corresponds to the location of the
near-bound state at the physical quark masses.

pattern emerging as to how the dineutron will unbind as the pion mass is reduced. The results
that have been obtained in Refs. [15, 21] have consistently smaller uncertainties than those found in
Ref. [11, 14] and in the present work. However, the results are consistent within the uncertainties.

B. Scattering in the 1

S

0

Channel

Correlation functions for two nucleons in the 1
S0 state were constructed in the A1 irrep of the

cubic group. The Ek2Ps associated with the states near the k = 2⇡/L and k = 4⇡/L noninteracting
levels are shown in Fig. 24 and Fig. 25, respectively. For the lowest-lying “continuum” state,
plateaus were found in all three ensembles, however, only the L=32 ensemble has correlation
functions that were su�ciently clean to extract the next higher level. A plateau was also identified
in the system with one unit of total momentum, as shown in Fig. 26. The values of k cot �(

1S0) and
the phase shift are given in Table X and shown in Fig. 27. Many of the qualitative features of
the results for the scattering amplitude in this channel are similar to those in the 3

S1-3D1 coupled

B.E of di-neutron B.E of deuteron
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I. Direct method



Extraction of energy shift

Plateau method

Energy shift �E ⌘ ENN � 2mN

O(2 GeV) O(2 GeV)O(10 MeV)

large cancellation 
0.5 % accuracy required

Ratio R(t) =
GNN (t)

GN (t)2
⇠ e��Et expect cancellation of both statistical 

and systematic errors 

Effective energy shift

�E(t) =
1
a

log
R(t)

R(t + a)
�� �E, t��
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FIG. 5: Same as Fig. 3 for 3He channel.
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FIG. 6: Same as Fig. 2 for 3S1 channel.
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YIKU 2012: PRD86(2012)074514

We identify �E(t) as �E, if it becomes constant.

t=0.9-1.3 fm



Is the plateau method reliable ? 
Excitation energy

binding energy: very small
E1 � E0

finite volume effect for scattering state

' 1

mN

(2⇡)2

L2

• Excitation energy ~ binding energy or finite V effect  
 

 
 
 
 
 
 

 

 

 
Elastic 

       

 
Inelastic 

NNπ 

NN 

Physical Mπ 
L=8fm 

Mπ=0.5 GeV 
L=3fm 

Mπ=0.3 GeV 
L=6fm 

10-13 10-25 10-4 

(simple) 

System w/o Gap 

New Challenge for multi-body systems 
30 

(For both of Direct method / (old) HAL method) 

Challenges in multi-baryons on the lattice 

(very small) 

E1 � E0 ' 50 MeV at L = 4 fm

t � 1/(E1 � E0) ' 4 fm is needed to suppress excited states.

Observing the plateau guarantees the ground state saturation even when
t � 1/(E1 � E0) is NOT satisfied.

claimed by Y(I)KU(‘11,’12,’15), NPL(’12,’13,’15), CalLat(’15)



Examination of the statement
Mock-up data

R(t) = e��Et
�
1 + b e��Eelt + c e��Einelt

�

the lowest excitation energy of elastic scattering state

�Einel = 500 MeV the inelastic energy from heavy pions 

“TimeAdependent”$method$(HAL$QCD$poten=alĀoøþ¯Hò#y�ñap)�
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1
L2

c = 0.01 1% contamination

b = ±0.1

�Eel = 50 MeV at L � 4 fm

10 % contamination b = 0 for a comparison

@ m⇡ = 0.5 GeV, L = 4 fm (setup of YIKU2012)
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Zoom + increasing errors and fluctuations



b=0.1

b=-0.1

b=0

Zoom + increasing errors and fluctuations
“plateau-like” structure at t ~ 1fm 

but they are fake 

t=8-10 fm 
necessary  

Can plateau identification avoid the S/N issue ? 
~ demonstration in direct method ~ 

• “Observation of plateau guarantees the G.S. saturation 
even when t >> 1/(E1-E0) is NOT satisfied” 
 

• Mock-up data 

Yamazaki et al. (’11,’12,’15), NPL (’12,’13,’15), CalLat(’15) 

Zoom + typical stat error 

It’s a Myth ! 
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even when t >> 1/(E1-E0) is NOT satisfied” 
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Yamazaki et al. (’11,’12,’15), NPL (’12,’13,’15), CalLat(’15) 

Zoom + typical stat error 

It’s a Myth ! 

No ! We can not distinguish the real plateau from its mirages.

Observing the plateau guarantees the ground state saturation even when
t � 1/(E1 � E0) is NOT satisfied. claimed by Y(I)KU(‘11,’12,’15), NPL(’12,’13,’15), CalLat(’15)
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The “looking for a plateau at small t” method does not work.



II. Mirage problem
(Operator dependence)

- Manifestation of the problem I -

T. Iritani et al. (HAL QCD), JHEP1610(2016)101 (arXiv:1607.06371)



Source operator dependence of plateaux
Lattice Setup: Wall Source and Smeared Source
! ΞΞ interaction from both direct and HAL QCD methods

! CHECK 2 quark sources — mixture of excited states are different

wall source
standard of HAL QCD

smeared source
standard of direct method†

WALL SOURCE SMEARED SOURCE

SINK SINK

" setup — 2 + 1 improved Wilson + Iwasaki gauge†

• lattice spacing: a = 0.08995(40) fm, a−1 = 2.194(10) GeV
• lattice volume: 323 × 48, 403 × 48, 483 × 48, and 643 × 64

mπ = 0.51 GeV, mN = 1.32 GeV, mK = 0.62 GeV, mΞ = 1.46 GeV

† Yamazaki-Ishikawa-Kuramashi-Ukawa, arXiv:1207.4277. 7 / 16

quark wall source vs quark smeared source

�

y

q(y, t0)
�

y

e�B|x0�y|q(y, t0)

Lattice setup 2+1 flavor QCD

a = 0.09 fm (a�1 = 2.2 GeV)

m� = 0.51 GeV, mN = 1.32 GeV, mK = 0.62 GeV, m� = 1.46 GeV

same gauge configurations of YIKU 2012

b are different between the two. 



Energy shift of �� smaller statistical errors

��(1S0) ��(3S1)

smeared

smeared

wall

wall

• Not surprisingly, two sources disagree.

• The mirage problem becomes reality.

• Plateau-like structures around t=1-1.5 fm are by no means trustable. 

• Both might agree at t > 18a, but errors are too large.

1.35 fm

1.35 fm
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Same problem also appears for NN

NN(1S0) NN(3S1)

wall

smear

smear

wall

With larger errors,  disagreement also exists.

In addition, we may have



Sink 2-baryon operator dependence of plateaux

�

�

x

y
source

sink

G��(t) =
�

x,y

g(|x� y|)��(x, t)�(y, t)J��(t0)�

J��(t0)

g(r) = 1 : standrad sink operator

g(r) = 1 + A exp(�Br) : generalized sink operator

The true plateau must NOT dependent on g(r).



Smeared source Wall source

• smeared source is very sensitive to g(r). 

• Sometimes deeper and more stable.

• one can produce an arbitrary value (within a certain range) by g(r).

• Wall source is insensitive to g(r).



• Dangers of fake plateaux exit in principle for the direct method.

• Problem becomes manifest in the strong source/sink operator dependences 
of plateau values in YIKU 2012.

• Are there any symptoms in other results ?

• Study of source dependences requires additional simulations.

• need simpler and easier check  



III. Sanity check
- Manifestation of the problem II -

S. Aoki, T. Doi, T. Iritani, PoS(Lattice2016) 109 (aiXiv:1610:09763)



Finite volume formula Lüscher, NPB354(1991)531

Direct method
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FIG. 9: Same as Fig. 3 for 1S0 channel.
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ERE at physical pion mass



ERE at physical pion mass

Instead, a behavior shown below 
indicates the problem in lattice 
QCD data.
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ERE at physical pion mass

Instead, a behavior shown below 
indicates the problem in lattice 
QCD data.

1/a ' �1, r ' �1



ERE at physical pion mass

Instead, a behavior shown below 
indicates the problem in lattice 
QCD data.

1/a ' �1, r ' �1

“Sanity Check”



YIKU2012

singular behaviors 

Yamazaki et al.  PRD86(2012)074514
m⇡ = 0.51 GeV, L = 2.9� 5.8 fm

smeared

smeared

�ENN (1S0) = �7.4(1.3)(0.6) MeV �ENN (3S1) = �11.5(1.1)(0.6) MeV

ERE? ERE?

�E is almost independent on L, while it is shallow bound state.

“Not Sanity”



IV. Conclusion



The direct method gives no reliable result for two(or more)-baryon 
systems so far, since systematic errors due to contaminations from 
excited (elastic) states are not under control.
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degree, with the nucleon mass. The success of the non-
relativistic quark model (NRQM) in describing the
magnetic moments of the lowest-lying baryons as the
sum of contributions from three weakly bound nonrelativ-
istic quarks, with up- and down-quark masses of MU;D ∼
300 MeV and strange-quark mass of MS ∼ 500 MeV,
suggests that naive scaling with the hadron mass should
capture most of the quark-mass dependence. From the
perspective of chiral perturbation theory (χPT), the leading
contributions to the nucleon magnetic moments are from
dimension-five operators, with the leading quark-mass
dependence arising from mesons loops that are suppressed
in the chiral expansion, and scaling linearly with the mass
of the pion. Consistency of the magnetic moments calcu-
lated in the NRQM and in χPT suggests that the nucleon
mass scales linearly with the pion mass, which is incon-
sistent with chiral power counting, but consistent with the
results obtained from analysis of lattice QCD calculations
[24]. It should be emphasized that the magnetic moments of
the light nuclei that we study here are well understood in
the context of nuclear chiral effective field theory, where
pions and nucleons are the effective degrees of freedom,
and heavier meson-exchange-type contributions are
included as various contact interactions among nucleons
(see, for instance, Ref. [25]).
The present calculations have been performed at a single

lattice spacing and in one lattice volume, and the lack of
continuum and infinite volume extrapolations introduces
systematic uncertainties into our results. Chiral perturba-
tion theory can be used to estimate the finite volume (FV)
effects in the magnetic moments, using the sum of the
known [26] effects on the constituent nucleons. These
contributions are≲1% in all cases. There may be additional

effects beyond the single particle contributions; however,
the binding energies of light nuclei calculated previously in
multiple volumes at this quark mass [4] demonstrate that
the current lattice volume is large enough for such FV
effects to be negligible. In contrast, calculations with
multiple lattice spacings have not been performed at this
heavier pion mass, and, consequently, this systematic
uncertainty remains to be quantified. However, electro-
magnetic contributions to the action are perturbatively
improved as they are included as a background field in
the link variables. Consequently, the lattice spacing arti-
facts are expected to be small, entering atOðΛ2

QCDa
2Þ ∼ 3%

for ΛQCD ¼ 300 MeV. To account for these effects, we
combine the two sources of uncertainty in quadrature and
assess an overall multiplicative systematic uncertainty of
3% on all the extracted moments. For the nuclei, this is
small compared to the other systematic uncertainties, but
for the neutron, in particular, it is the dominant uncertainty.
In conclusion, we have presented the results of lattice

QCD calculations of the magnetic moments of the lightest
nuclei at the flavor SU(3) symmetric point. We find that,
when rescaled by the mass of the nucleon, the magnetic
moments of the proton, neutron, deuteron, 3He, and triton
are remarkably close to their experimental values. The
magnetic moment of 3He is very close to that of a free
neutron, consistent with the two protons in the 1s state spin
paired to jp ¼ 0 and the valence neutron in the 1s.
Analogous results are found for the triton, and the magnetic
moment of the deuteron is consistent with the sum of the
neutron and proton magnetic moments. This work dem-
onstrates for the first time that QCD can be used to calculate
the structure of nuclei from first principles. Calculations
using these techniques at lighter quark masses and for
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FIG. 3 (color online). The magnetic moments of the proton,
neutron, deuteron, 3He, and triton. The results of the lattice QCD
calculation at a pion mass of mπ ∼ 806 MeV, in units of natural
nuclear magnetons (e=2Mlatt

N ), are shown as the solid bands. The
inner bands corresponds to the statistical uncertainties, while the
outer bands correspond to the statistical and systematic uncer-
tainties combined in quadrature, and include our estimates of the
uncertainties from lattice spacing and volume. The red dashed
lines show the experimentally measured values at the physical
quark masses.
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FIG. 4 (color online). The differences between the nuclear
magnetic moments and the predictions of the naive shell model.
The results of the lattice QCD calculation at a pion mass of
mπ ∼ 806 MeV, in units of natural nuclear magnetons (e=2Mlatt

N ),
are shown as the solid bands. The inner band corresponds to the
statistical uncertainties, while the outer bands correspond to the
statistical and systematic uncertainties combined in quadrature,
including estimates of the uncertainties from lattice spacing and
volume. The red dashed lines show the experimentally measured
differences.
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FIG. 1. The ratios of correlation functions that determine
the unrenormalized isovector axial charge of the proton. The
orange diamonds (blue circles) correspond to the SS (SP) ef-
fective correlator ratios, Rp(t), defined in Eq. (4), and the
band corresponds to a constant fit to the plateau interval of
both SS and SP.

response by using suitable polynomial fits. The di↵er-
ence of the up-quark and down-quark matrix elements
can be used to construct the desired three-point function
containing the isovector axial current. This can then be
combined with the zero-field two-point function to form
a ratio that asymptotes to the desired axial charge at late
times, namely

Rp(t) =
C

(p)
�u;�d=0(t)
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� C

(p)
�u=0;�d

(t)
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(p)
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, (3)

where the ratios are spin-weighted averages, and “
��
O(�q)

”

extracts the coe�cient of �q in the preceding expression.
Then,

Rp(t) ⌘ Rp(t+ 1)�Rp(t)
t!1�! gA

ZA
. (4)

The e↵ective-gA plots resulting from the correlator dif-
ferences are shown in Fig. 1, along with the result of
a combined constant fit to the SS and SP ratios that
extracts gA/ZA from the late-time asymptote. The ex-
tracted value is gA/ZA = 1.298(2)(7), where the first un-
certainty is statistical (determined from a bootstrap anal-
ysis) and the second is systematic (arising from choices
of fit ranges in both the field strengths and temporal
separation as well as from di↵erences in analysis tech-
niques). Including the renormalization factor yields an
axial charge of gA = 1.13(2)(7), which is consistent with
previous determinations from standard three-point func-
tion techniques at this pion mass [52, 53].

The GT Matrix Element for Tritium �-decay: The
half-life of tritium, t1/2, is related to the F and GT matrix
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FIG. 2. The ratios of correlation functions that determine
the unrenormalized isovector axial matrix element in 3H (up-
per panel), and the ratio of the isovector axial matrix ele-
ment in 3H to that in the proton (lower panel). The orange
diamonds (blue circles) correspond to the SS (SP) e↵ective
correlator ratios and the bands correspond to constant fits to
the asymptotic behavior.

elements by [1]

(1 + �R)fV
K/G

2
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t1/2 =
1

hFi2 + fA/fV g

2
AhGTi2 , (5)

where the factors on the left-hand side are known pre-
cisely from theory or experiment. On the right-hand
side, fA,V denote known Fermi functions [54] and hFi
and hGTi are the F and GT reduced matrix elements,
respectively. The Ademollo-Gatto theorem [55] im-
plies hFi ⇠ 1, modified only by second-order isospin-
breaking and by electromagnetic corrections. However,
h3He|q�k�5⌧+q|3Hi = u�k�5⌧

+
u gAhGTi (assuming van-

ishing electron mass and at vanishing lepton momentum)
is less constrained, and its evaluation is the focus of this
section.

By isospin symmetry, the spin-averaged GT matrix el-
ement for 3H!3He e

�
⌫ is related to the axial charge of

the triton, gA(3H), when the light quarks are degener-
ate and in the absence of electromagnetism. Analogous
to Rp(t) in Eq. (3), the ratio R

3H(t) of correlation func-
tions in background fields is constructed such that, anal-
ogous to Eq. (4), R3H(t) ! gA(3H)/ZA in the large-time
limit. The analysis of these correlation functions is more
complex than for the proton because the triton has four
up quarks and five down quarks and the correlators are
thus quartic and quintic polynomials in �u,d, respectively.
Polynomial fits to the calculated correlation functions are
su�cient to extract the terms linear in �u,d. Results for
R

3H(t) are shown in Fig. 2 along with a constant fit to
the asymptotic value gA(3H)/ZA. Also shown in Fig. 2
is hGTi(t) = R

3H(t)/Rp(t), which is independent of ZA,
and the fit to its asymptotic value, gA(3H)/gA. Analyses
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degree, with the nucleon mass. The success of the non-
relativistic quark model (NRQM) in describing the
magnetic moments of the lowest-lying baryons as the
sum of contributions from three weakly bound nonrelativ-
istic quarks, with up- and down-quark masses of MU;D ∼
300 MeV and strange-quark mass of MS ∼ 500 MeV,
suggests that naive scaling with the hadron mass should
capture most of the quark-mass dependence. From the
perspective of chiral perturbation theory (χPT), the leading
contributions to the nucleon magnetic moments are from
dimension-five operators, with the leading quark-mass
dependence arising from mesons loops that are suppressed
in the chiral expansion, and scaling linearly with the mass
of the pion. Consistency of the magnetic moments calcu-
lated in the NRQM and in χPT suggests that the nucleon
mass scales linearly with the pion mass, which is incon-
sistent with chiral power counting, but consistent with the
results obtained from analysis of lattice QCD calculations
[24]. It should be emphasized that the magnetic moments of
the light nuclei that we study here are well understood in
the context of nuclear chiral effective field theory, where
pions and nucleons are the effective degrees of freedom,
and heavier meson-exchange-type contributions are
included as various contact interactions among nucleons
(see, for instance, Ref. [25]).
The present calculations have been performed at a single

lattice spacing and in one lattice volume, and the lack of
continuum and infinite volume extrapolations introduces
systematic uncertainties into our results. Chiral perturba-
tion theory can be used to estimate the finite volume (FV)
effects in the magnetic moments, using the sum of the
known [26] effects on the constituent nucleons. These
contributions are≲1% in all cases. There may be additional

effects beyond the single particle contributions; however,
the binding energies of light nuclei calculated previously in
multiple volumes at this quark mass [4] demonstrate that
the current lattice volume is large enough for such FV
effects to be negligible. In contrast, calculations with
multiple lattice spacings have not been performed at this
heavier pion mass, and, consequently, this systematic
uncertainty remains to be quantified. However, electro-
magnetic contributions to the action are perturbatively
improved as they are included as a background field in
the link variables. Consequently, the lattice spacing arti-
facts are expected to be small, entering atOðΛ2

QCDa
2Þ ∼ 3%

for ΛQCD ¼ 300 MeV. To account for these effects, we
combine the two sources of uncertainty in quadrature and
assess an overall multiplicative systematic uncertainty of
3% on all the extracted moments. For the nuclei, this is
small compared to the other systematic uncertainties, but
for the neutron, in particular, it is the dominant uncertainty.
In conclusion, we have presented the results of lattice

QCD calculations of the magnetic moments of the lightest
nuclei at the flavor SU(3) symmetric point. We find that,
when rescaled by the mass of the nucleon, the magnetic
moments of the proton, neutron, deuteron, 3He, and triton
are remarkably close to their experimental values. The
magnetic moment of 3He is very close to that of a free
neutron, consistent with the two protons in the 1s state spin
paired to jp ¼ 0 and the valence neutron in the 1s.
Analogous results are found for the triton, and the magnetic
moment of the deuteron is consistent with the sum of the
neutron and proton magnetic moments. This work dem-
onstrates for the first time that QCD can be used to calculate
the structure of nuclei from first principles. Calculations
using these techniques at lighter quark masses and for
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FIG. 3 (color online). The magnetic moments of the proton,
neutron, deuteron, 3He, and triton. The results of the lattice QCD
calculation at a pion mass of mπ ∼ 806 MeV, in units of natural
nuclear magnetons (e=2Mlatt

N ), are shown as the solid bands. The
inner bands corresponds to the statistical uncertainties, while the
outer bands correspond to the statistical and systematic uncer-
tainties combined in quadrature, and include our estimates of the
uncertainties from lattice spacing and volume. The red dashed
lines show the experimentally measured values at the physical
quark masses.
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FIG. 4 (color online). The differences between the nuclear
magnetic moments and the predictions of the naive shell model.
The results of the lattice QCD calculation at a pion mass of
mπ ∼ 806 MeV, in units of natural nuclear magnetons (e=2Mlatt

N ),
are shown as the solid bands. The inner band corresponds to the
statistical uncertainties, while the outer bands correspond to the
statistical and systematic uncertainties combined in quadrature,
including estimates of the uncertainties from lattice spacing and
volume. The red dashed lines show the experimentally measured
differences.
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FIG. 1. The ratios of correlation functions that determine
the unrenormalized isovector axial charge of the proton. The
orange diamonds (blue circles) correspond to the SS (SP) ef-
fective correlator ratios, Rp(t), defined in Eq. (4), and the
band corresponds to a constant fit to the plateau interval of
both SS and SP.

response by using suitable polynomial fits. The di↵er-
ence of the up-quark and down-quark matrix elements
can be used to construct the desired three-point function
containing the isovector axial current. This can then be
combined with the zero-field two-point function to form
a ratio that asymptotes to the desired axial charge at late
times, namely

Rp(t) =
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where the ratios are spin-weighted averages, and “
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O(�q)

”

extracts the coe�cient of �q in the preceding expression.
Then,

Rp(t) ⌘ Rp(t+ 1)�Rp(t)
t!1�! gA

ZA
. (4)

The e↵ective-gA plots resulting from the correlator dif-
ferences are shown in Fig. 1, along with the result of
a combined constant fit to the SS and SP ratios that
extracts gA/ZA from the late-time asymptote. The ex-
tracted value is gA/ZA = 1.298(2)(7), where the first un-
certainty is statistical (determined from a bootstrap anal-
ysis) and the second is systematic (arising from choices
of fit ranges in both the field strengths and temporal
separation as well as from di↵erences in analysis tech-
niques). Including the renormalization factor yields an
axial charge of gA = 1.13(2)(7), which is consistent with
previous determinations from standard three-point func-
tion techniques at this pion mass [52, 53].

The GT Matrix Element for Tritium �-decay: The
half-life of tritium, t1/2, is related to the F and GT matrix
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FIG. 2. The ratios of correlation functions that determine
the unrenormalized isovector axial matrix element in 3H (up-
per panel), and the ratio of the isovector axial matrix ele-
ment in 3H to that in the proton (lower panel). The orange
diamonds (blue circles) correspond to the SS (SP) e↵ective
correlator ratios and the bands correspond to constant fits to
the asymptotic behavior.
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2
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t1/2 =
1

hFi2 + fA/fV g

2
AhGTi2 , (5)

where the factors on the left-hand side are known pre-
cisely from theory or experiment. On the right-hand
side, fA,V denote known Fermi functions [54] and hFi
and hGTi are the F and GT reduced matrix elements,
respectively. The Ademollo-Gatto theorem [55] im-
plies hFi ⇠ 1, modified only by second-order isospin-
breaking and by electromagnetic corrections. However,
h3He|q�k�5⌧+q|3Hi = u�k�5⌧

+
u gAhGTi (assuming van-

ishing electron mass and at vanishing lepton momentum)
is less constrained, and its evaluation is the focus of this
section.

By isospin symmetry, the spin-averaged GT matrix el-
ement for 3H!3He e

�
⌫ is related to the axial charge of

the triton, gA(3H), when the light quarks are degener-
ate and in the absence of electromagnetism. Analogous
to Rp(t) in Eq. (3), the ratio R

3H(t) of correlation func-
tions in background fields is constructed such that, anal-
ogous to Eq. (4), R3H(t) ! gA(3H)/ZA in the large-time
limit. The analysis of these correlation functions is more
complex than for the proton because the triton has four
up quarks and five down quarks and the correlators are
thus quartic and quintic polynomials in �u,d, respectively.
Polynomial fits to the calculated correlation functions are
su�cient to extract the terms linear in �u,d. Results for
R

3H(t) are shown in Fig. 2 along with a constant fit to
the asymptotic value gA(3H)/ZA. Also shown in Fig. 2
is hGTi(t) = R

3H(t)/Rp(t), which is independent of ZA,
and the fit to its asymptotic value, gA(3H)/gA. Analyses
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degree, with the nucleon mass. The success of the non-
relativistic quark model (NRQM) in describing the
magnetic moments of the lowest-lying baryons as the
sum of contributions from three weakly bound nonrelativ-
istic quarks, with up- and down-quark masses of MU;D ∼
300 MeV and strange-quark mass of MS ∼ 500 MeV,
suggests that naive scaling with the hadron mass should
capture most of the quark-mass dependence. From the
perspective of chiral perturbation theory (χPT), the leading
contributions to the nucleon magnetic moments are from
dimension-five operators, with the leading quark-mass
dependence arising from mesons loops that are suppressed
in the chiral expansion, and scaling linearly with the mass
of the pion. Consistency of the magnetic moments calcu-
lated in the NRQM and in χPT suggests that the nucleon
mass scales linearly with the pion mass, which is incon-
sistent with chiral power counting, but consistent with the
results obtained from analysis of lattice QCD calculations
[24]. It should be emphasized that the magnetic moments of
the light nuclei that we study here are well understood in
the context of nuclear chiral effective field theory, where
pions and nucleons are the effective degrees of freedom,
and heavier meson-exchange-type contributions are
included as various contact interactions among nucleons
(see, for instance, Ref. [25]).
The present calculations have been performed at a single

lattice spacing and in one lattice volume, and the lack of
continuum and infinite volume extrapolations introduces
systematic uncertainties into our results. Chiral perturba-
tion theory can be used to estimate the finite volume (FV)
effects in the magnetic moments, using the sum of the
known [26] effects on the constituent nucleons. These
contributions are≲1% in all cases. There may be additional

effects beyond the single particle contributions; however,
the binding energies of light nuclei calculated previously in
multiple volumes at this quark mass [4] demonstrate that
the current lattice volume is large enough for such FV
effects to be negligible. In contrast, calculations with
multiple lattice spacings have not been performed at this
heavier pion mass, and, consequently, this systematic
uncertainty remains to be quantified. However, electro-
magnetic contributions to the action are perturbatively
improved as they are included as a background field in
the link variables. Consequently, the lattice spacing arti-
facts are expected to be small, entering atOðΛ2

QCDa
2Þ ∼ 3%

for ΛQCD ¼ 300 MeV. To account for these effects, we
combine the two sources of uncertainty in quadrature and
assess an overall multiplicative systematic uncertainty of
3% on all the extracted moments. For the nuclei, this is
small compared to the other systematic uncertainties, but
for the neutron, in particular, it is the dominant uncertainty.
In conclusion, we have presented the results of lattice

QCD calculations of the magnetic moments of the lightest
nuclei at the flavor SU(3) symmetric point. We find that,
when rescaled by the mass of the nucleon, the magnetic
moments of the proton, neutron, deuteron, 3He, and triton
are remarkably close to their experimental values. The
magnetic moment of 3He is very close to that of a free
neutron, consistent with the two protons in the 1s state spin
paired to jp ¼ 0 and the valence neutron in the 1s.
Analogous results are found for the triton, and the magnetic
moment of the deuteron is consistent with the sum of the
neutron and proton magnetic moments. This work dem-
onstrates for the first time that QCD can be used to calculate
the structure of nuclei from first principles. Calculations
using these techniques at lighter quark masses and for
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FIG. 3 (color online). The magnetic moments of the proton,
neutron, deuteron, 3He, and triton. The results of the lattice QCD
calculation at a pion mass of mπ ∼ 806 MeV, in units of natural
nuclear magnetons (e=2Mlatt

N ), are shown as the solid bands. The
inner bands corresponds to the statistical uncertainties, while the
outer bands correspond to the statistical and systematic uncer-
tainties combined in quadrature, and include our estimates of the
uncertainties from lattice spacing and volume. The red dashed
lines show the experimentally measured values at the physical
quark masses.
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FIG. 4 (color online). The differences between the nuclear
magnetic moments and the predictions of the naive shell model.
The results of the lattice QCD calculation at a pion mass of
mπ ∼ 806 MeV, in units of natural nuclear magnetons (e=2Mlatt

N ),
are shown as the solid bands. The inner band corresponds to the
statistical uncertainties, while the outer bands correspond to the
statistical and systematic uncertainties combined in quadrature,
including estimates of the uncertainties from lattice spacing and
volume. The red dashed lines show the experimentally measured
differences.
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FIG. 1. The ratios of correlation functions that determine
the unrenormalized isovector axial charge of the proton. The
orange diamonds (blue circles) correspond to the SS (SP) ef-
fective correlator ratios, Rp(t), defined in Eq. (4), and the
band corresponds to a constant fit to the plateau interval of
both SS and SP.

response by using suitable polynomial fits. The di↵er-
ence of the up-quark and down-quark matrix elements
can be used to construct the desired three-point function
containing the isovector axial current. This can then be
combined with the zero-field two-point function to form
a ratio that asymptotes to the desired axial charge at late
times, namely
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where the ratios are spin-weighted averages, and “
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O(�q)

”

extracts the coe�cient of �q in the preceding expression.
Then,

Rp(t) ⌘ Rp(t+ 1)�Rp(t)
t!1�! gA

ZA
. (4)

The e↵ective-gA plots resulting from the correlator dif-
ferences are shown in Fig. 1, along with the result of
a combined constant fit to the SS and SP ratios that
extracts gA/ZA from the late-time asymptote. The ex-
tracted value is gA/ZA = 1.298(2)(7), where the first un-
certainty is statistical (determined from a bootstrap anal-
ysis) and the second is systematic (arising from choices
of fit ranges in both the field strengths and temporal
separation as well as from di↵erences in analysis tech-
niques). Including the renormalization factor yields an
axial charge of gA = 1.13(2)(7), which is consistent with
previous determinations from standard three-point func-
tion techniques at this pion mass [52, 53].

The GT Matrix Element for Tritium �-decay: The
half-life of tritium, t1/2, is related to the F and GT matrix

1.10

1.20

1.30

1.40

2 4 6 8 10
0.90

0.94

0.98

1.02

FIG. 2. The ratios of correlation functions that determine
the unrenormalized isovector axial matrix element in 3H (up-
per panel), and the ratio of the isovector axial matrix ele-
ment in 3H to that in the proton (lower panel). The orange
diamonds (blue circles) correspond to the SS (SP) e↵ective
correlator ratios and the bands correspond to constant fits to
the asymptotic behavior.
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hFi2 + fA/fV g

2
AhGTi2 , (5)

where the factors on the left-hand side are known pre-
cisely from theory or experiment. On the right-hand
side, fA,V denote known Fermi functions [54] and hFi
and hGTi are the F and GT reduced matrix elements,
respectively. The Ademollo-Gatto theorem [55] im-
plies hFi ⇠ 1, modified only by second-order isospin-
breaking and by electromagnetic corrections. However,
h3He|q�k�5⌧+q|3Hi = u�k�5⌧

+
u gAhGTi (assuming van-

ishing electron mass and at vanishing lepton momentum)
is less constrained, and its evaluation is the focus of this
section.

By isospin symmetry, the spin-averaged GT matrix el-
ement for 3H!3He e

�
⌫ is related to the axial charge of

the triton, gA(3H), when the light quarks are degener-
ate and in the absence of electromagnetism. Analogous
to Rp(t) in Eq. (3), the ratio R

3H(t) of correlation func-
tions in background fields is constructed such that, anal-
ogous to Eq. (4), R3H(t) ! gA(3H)/ZA in the large-time
limit. The analysis of these correlation functions is more
complex than for the proton because the triton has four
up quarks and five down quarks and the correlators are
thus quartic and quintic polynomials in �u,d, respectively.
Polynomial fits to the calculated correlation functions are
su�cient to extract the terms linear in �u,d. Results for
R

3H(t) are shown in Fig. 2 along with a constant fit to
the asymptotic value gA(3H)/ZA. Also shown in Fig. 2
is hGTi(t) = R

3H(t)/Rp(t), which is independent of ZA,
and the fit to its asymptotic value, gA(3H)/gA. Analyses
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degree, with the nucleon mass. The success of the non-
relativistic quark model (NRQM) in describing the
magnetic moments of the lowest-lying baryons as the
sum of contributions from three weakly bound nonrelativ-
istic quarks, with up- and down-quark masses of MU;D ∼
300 MeV and strange-quark mass of MS ∼ 500 MeV,
suggests that naive scaling with the hadron mass should
capture most of the quark-mass dependence. From the
perspective of chiral perturbation theory (χPT), the leading
contributions to the nucleon magnetic moments are from
dimension-five operators, with the leading quark-mass
dependence arising from mesons loops that are suppressed
in the chiral expansion, and scaling linearly with the mass
of the pion. Consistency of the magnetic moments calcu-
lated in the NRQM and in χPT suggests that the nucleon
mass scales linearly with the pion mass, which is incon-
sistent with chiral power counting, but consistent with the
results obtained from analysis of lattice QCD calculations
[24]. It should be emphasized that the magnetic moments of
the light nuclei that we study here are well understood in
the context of nuclear chiral effective field theory, where
pions and nucleons are the effective degrees of freedom,
and heavier meson-exchange-type contributions are
included as various contact interactions among nucleons
(see, for instance, Ref. [25]).
The present calculations have been performed at a single

lattice spacing and in one lattice volume, and the lack of
continuum and infinite volume extrapolations introduces
systematic uncertainties into our results. Chiral perturba-
tion theory can be used to estimate the finite volume (FV)
effects in the magnetic moments, using the sum of the
known [26] effects on the constituent nucleons. These
contributions are≲1% in all cases. There may be additional

effects beyond the single particle contributions; however,
the binding energies of light nuclei calculated previously in
multiple volumes at this quark mass [4] demonstrate that
the current lattice volume is large enough for such FV
effects to be negligible. In contrast, calculations with
multiple lattice spacings have not been performed at this
heavier pion mass, and, consequently, this systematic
uncertainty remains to be quantified. However, electro-
magnetic contributions to the action are perturbatively
improved as they are included as a background field in
the link variables. Consequently, the lattice spacing arti-
facts are expected to be small, entering atOðΛ2

QCDa
2Þ ∼ 3%

for ΛQCD ¼ 300 MeV. To account for these effects, we
combine the two sources of uncertainty in quadrature and
assess an overall multiplicative systematic uncertainty of
3% on all the extracted moments. For the nuclei, this is
small compared to the other systematic uncertainties, but
for the neutron, in particular, it is the dominant uncertainty.
In conclusion, we have presented the results of lattice

QCD calculations of the magnetic moments of the lightest
nuclei at the flavor SU(3) symmetric point. We find that,
when rescaled by the mass of the nucleon, the magnetic
moments of the proton, neutron, deuteron, 3He, and triton
are remarkably close to their experimental values. The
magnetic moment of 3He is very close to that of a free
neutron, consistent with the two protons in the 1s state spin
paired to jp ¼ 0 and the valence neutron in the 1s.
Analogous results are found for the triton, and the magnetic
moment of the deuteron is consistent with the sum of the
neutron and proton magnetic moments. This work dem-
onstrates for the first time that QCD can be used to calculate
the structure of nuclei from first principles. Calculations
using these techniques at lighter quark masses and for
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FIG. 3 (color online). The magnetic moments of the proton,
neutron, deuteron, 3He, and triton. The results of the lattice QCD
calculation at a pion mass of mπ ∼ 806 MeV, in units of natural
nuclear magnetons (e=2Mlatt

N ), are shown as the solid bands. The
inner bands corresponds to the statistical uncertainties, while the
outer bands correspond to the statistical and systematic uncer-
tainties combined in quadrature, and include our estimates of the
uncertainties from lattice spacing and volume. The red dashed
lines show the experimentally measured values at the physical
quark masses.
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FIG. 4 (color online). The differences between the nuclear
magnetic moments and the predictions of the naive shell model.
The results of the lattice QCD calculation at a pion mass of
mπ ∼ 806 MeV, in units of natural nuclear magnetons (e=2Mlatt

N ),
are shown as the solid bands. The inner band corresponds to the
statistical uncertainties, while the outer bands correspond to the
statistical and systematic uncertainties combined in quadrature,
including estimates of the uncertainties from lattice spacing and
volume. The red dashed lines show the experimentally measured
differences.
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FIG. 1. The ratios of correlation functions that determine
the unrenormalized isovector axial charge of the proton. The
orange diamonds (blue circles) correspond to the SS (SP) ef-
fective correlator ratios, Rp(t), defined in Eq. (4), and the
band corresponds to a constant fit to the plateau interval of
both SS and SP.

response by using suitable polynomial fits. The di↵er-
ence of the up-quark and down-quark matrix elements
can be used to construct the desired three-point function
containing the isovector axial current. This can then be
combined with the zero-field two-point function to form
a ratio that asymptotes to the desired axial charge at late
times, namely

Rp(t) =
C

(p)
�u;�d=0(t)

���
O(�u)

� C

(p)
�u=0;�d

(t)
���
O(�d)

C

(p)
�u=0;�d=0(t)

, (3)

where the ratios are spin-weighted averages, and “
��
O(�q)

”

extracts the coe�cient of �q in the preceding expression.
Then,

Rp(t) ⌘ Rp(t+ 1)�Rp(t)
t!1�! gA

ZA
. (4)

The e↵ective-gA plots resulting from the correlator dif-
ferences are shown in Fig. 1, along with the result of
a combined constant fit to the SS and SP ratios that
extracts gA/ZA from the late-time asymptote. The ex-
tracted value is gA/ZA = 1.298(2)(7), where the first un-
certainty is statistical (determined from a bootstrap anal-
ysis) and the second is systematic (arising from choices
of fit ranges in both the field strengths and temporal
separation as well as from di↵erences in analysis tech-
niques). Including the renormalization factor yields an
axial charge of gA = 1.13(2)(7), which is consistent with
previous determinations from standard three-point func-
tion techniques at this pion mass [52, 53].

The GT Matrix Element for Tritium �-decay: The
half-life of tritium, t1/2, is related to the F and GT matrix
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FIG. 2. The ratios of correlation functions that determine
the unrenormalized isovector axial matrix element in 3H (up-
per panel), and the ratio of the isovector axial matrix ele-
ment in 3H to that in the proton (lower panel). The orange
diamonds (blue circles) correspond to the SS (SP) e↵ective
correlator ratios and the bands correspond to constant fits to
the asymptotic behavior.

elements by [1]

(1 + �R)fV
K/G

2
V

t1/2 =
1

hFi2 + fA/fV g

2
AhGTi2 , (5)

where the factors on the left-hand side are known pre-
cisely from theory or experiment. On the right-hand
side, fA,V denote known Fermi functions [54] and hFi
and hGTi are the F and GT reduced matrix elements,
respectively. The Ademollo-Gatto theorem [55] im-
plies hFi ⇠ 1, modified only by second-order isospin-
breaking and by electromagnetic corrections. However,
h3He|q�k�5⌧+q|3Hi = u�k�5⌧

+
u gAhGTi (assuming van-

ishing electron mass and at vanishing lepton momentum)
is less constrained, and its evaluation is the focus of this
section.

By isospin symmetry, the spin-averaged GT matrix el-
ement for 3H!3He e

�
⌫ is related to the axial charge of

the triton, gA(3H), when the light quarks are degener-
ate and in the absence of electromagnetism. Analogous
to Rp(t) in Eq. (3), the ratio R

3H(t) of correlation func-
tions in background fields is constructed such that, anal-
ogous to Eq. (4), R3H(t) ! gA(3H)/ZA in the large-time
limit. The analysis of these correlation functions is more
complex than for the proton because the triton has four
up quarks and five down quarks and the correlators are
thus quartic and quintic polynomials in �u,d, respectively.
Polynomial fits to the calculated correlation functions are
su�cient to extract the terms linear in �u,d. Results for
R

3H(t) are shown in Fig. 2 along with a constant fit to
the asymptotic value gA(3H)/ZA. Also shown in Fig. 2
is hGTi(t) = R

3H(t)/Rp(t), which is independent of ZA,
and the fit to its asymptotic value, gA(3H)/gA. Analyses
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These results also suffer the same difficulty, and are probably wrong.

The variational method using several operators are mandatory to 
overcome the difficulty.

An Inconvenient Truth



Back-up slides



Yamazaki et al. 2011 : PRD84(2011)054506 Quenched, a � 0.128 fm, m� � 800 MeV

singular singular

Yamazaki et al. 2015 : PRD92(2015)014501 Nf = 2 + 1, a � 0.09 fm, m� � 300 MeV

singular singular



NPL 2012 : PRD85(2012)054511 Nf = 2 + 1, as � 0.123 fm, as/at � 3.5, m� � 390 MeV

singular
reasonable ?

singular

singular

singular



NPL 2012 : PRC88(2013)024003 Nf = 3 (SU(3) limit), a � 0.145 fm, mPS � 800 MeV

internally 
inconsistent 

internally 
inconsistent 

deeply bound deeply bound singular 



NPL 2015 : PRD92(2015)114512 Nf = 2 + 1, a � 0.1167 fm, m� � 450 MeV

internally inconsistent singular and internally inconsistent 


