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Overview of Research Results (1/3) 

• Fast Fourier Transform (FFT) 

– Implementation of Parallel 1-D FFT on GPU Clusters 

[Takahashi, IEEE CSE 2013] 

– An Implementation of Parallel 2-D FFT Using Intel AVX 

Instructions on Multi-Core Processors [Takahashi, 

ICA3PP 2012] 

– An Implementation of Parallel 1-D FFT on the K computer 

[Takahashi (U. Tsukuba), Uno and Yokokawa (RIKEN), 

IEEE HPCC 2012] 

– An Implementation of Parallel 3-D FFT with 2-D 

Decomposition on a Massively Parallel Cluster of Multi-

core Processors [Takahashi, PPAM 2009] 
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Overview of Research Results (2/3) 
• Triple and Quadruple Precision BLAS on GPUs 

– Implementation and Evaluation of Triple Precision BLAS 

Subroutines on GPUs [Mukunoki and Takahashi, IPDPSW 

2012] 

– Implementation and Evaluation of Quadruple Precision 

BLAS Functions on GPUs [Mukunoki and Takahashi, 

PARA 2010] 

• Multiple-Precision Arithmetic 

– Implementation of Multiple-Precision Floating-Point 

Arithmetic Library for GPU Computing [Nakayama and 

Takahashi, PDCS 2011] 

– Parallel implementation of multiple-precision arithmetic 

and 2,576,980,370,000 decimal digits of π calculation 

[Takahashi, Parallel Computing, 2010] 
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Overview of Research Results (3/3) 

• Sparse Matrix-Vector Multiplication on GPUs 

– Optimization of Sparse Matrix-vector Multiplication for 

CRS Format on NVIDIA Kepler Architecture GPUs 

[Mukunoki and Takahashi, ICCSA 2013] 

– Automatic Tuning of Sparse Matrix-Vector Multiplication 

for CRS format on GPUs 

[Yoshizawa and Takahashi, IEEE CSE 2012] 

– Optimization of Sparse Matrix-Vector Multiplication by 

Auto Selecting Storage Schemes on GPU 

[Kubota and Takahashi, ICCSA 2011] 
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Collaborations (1/2) 

• Collaboration between computer science and 
material science 
– Density-funtional theory (DFT) code includes Gram-

Schmidt orthogonalization of a large set of wave 
functions. 

– Implemented an effective algorithm for Gram-Schmidt 
orthogonalization with matrix multiplication. 

– J.-I. Iwata, D. Takahashi (U. Tsukuba), A. Oshiyama (U. 
Tokyo), T. Boku, K. Shiraishi, S. Okada and K. Yabana 
(U.Tsukuba): A massively-parallel electronic-structure 
calculations based on real-space density functional 
theory, J. Comput. Phys. (2010).  
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Collaborations (2/2) 
• Collaboration between computer science and  

molecular science 
– 3D reference interaction site model (3D-RISM) 

– The ordinary parallel 3D-RISM program has a limitation 
on the number of parallelism because of the limitations 
of the 3-D FFT with slab-wise decomposition. 

– Implemented a parallel 3-D FFT with 2-D (pencil-wise) 
decomposition.  

– The new 3D-RISM program achieved good scalability 
on the K computer. 

– Y. Maruyama (Keio U.), N. Yoshida (Kyushu U.), 
H. Tadano, D. Takahashi, M. Sato (U. Tsukuba) and 
F. Hirata (Inst. of Mol. Sciences): Massively Parallel 
Implementation of 3D-RISM Calculation with Volumetric 
3D-FFT, J. Comput. Chem. (submitted). 
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FFTE: A High-Performance FFT 

Library 

• FFTE is a Fortran subroutine library for 

computing the Fast Fourier Transform (FFT) in 

one or more dimensions. 

• It includes real, complex, mixed-radix and 

parallel transforms. 

• FFTE is typically faster than other publically-

available FFT implementations, and is even 

competitive with vendor-tuned libraries. 

• Available at http://www.ffte.jp/ 
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Features 

• Parallel transforms 
– Shared / Distributed memory parallel computers 

(OpenMP, MPI and OpenMP + MPI) 

• High portability 
– Fortran + OpenMP + MPI 

• Data layout 
– 1-D and 2-D decomposition (for parallel 3-D FFT) 

• HPC Challenge Benchmark 
– FFTE’s 1-D parallel FFT routine has been 

incorporated into the HPC Challenge (HPCC) 
benchmark. 
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Approach: Parallel 1-D FFT 
• Many FFT algorithms work well when the data 

sets fit into a cache. 

• When the problem size exceeds the cache size, 
however, the performance of these FFT 
algorithms decreases dramatically. 

• The key issue of the design for large FFTs is to 
minimize the number of cache misses. 

• The six-step FFT algorithm requires two 
multicolumn FFTs and three data transpositions. 

• For extremely large FFTs, each column FFT 
cannot fit into the cache. 

• In this case, the six-step FFT can be recursively 
applied to each column FFT. 

• We call this a recursive six-step FFT algorithm. 
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Recursive Six-Step FFT Algorithm 

• With the multicolumn FFTs in the six-step FFT 

algorithm, the Stockham autosort FFT algorithm  

[Swarztrauber 84] works well until the 𝑛 -point 

each column FFT exceeds the cache size. 

• However, for extremely large FFTs (e.g., 𝑛 = 240 -

point FFT), each 𝑛 -point column FFT is not small 

enough to fit into the L2 cache. 

• When each 𝑛 -point column FFT exceeds the 

cache size, the six-step FFT should be used. 

• This means that we can recursively use the six-step 

FFT for each column FFT. 
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Performance Results 

• To evaluate the implemented parallel 1-D FFT, we 

compared 

– Recursive six-step FFT-based parallel FFT 

– Six-step FFT-based parallel FFT 

• Target machine: K computer 

– 82944 nodes, 16 GB per node, 128 GFlops per node, 

1.27 PB total main memory,  communication bandwidth 5 

GB/s per node in each direction, and 10.6 PFlops peak 

performance. 

– We used 1 node to 8192 nodes. 

– A Tofu-optimized Message Passing Interface based on 

the Open MPI library was used. 
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14 

Performance of Parallel 1-D FFTs on the

K compuer, N=2^28×number of nodes
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Breakdown of Execution Time in Recursive Six-Step

FFT on the K computer, N=2^28×number of nodes
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High Precision Arithmetic Operations 
• Demand for high precision arithmetic operations 

– To compute ill-conditioned problems 

– Long-time and large-scale simulation: an accumulation of round-off 

error may become more serious problem 

• Double-double (DD) type quadruple precision arithmetic 

libraries 

– DDFUN90 [Bailey], QD [Bailey et al.] 

• Multiple precision arithmetic libraries 

– The GNU multiple precision arithmetic library (GMP) 

– MPFUN90 [Bailey], ARPREC [Bailey et al.] 

• Extended precision BLAS 

– CPU: XBLAS [Li et al.], MBLAS [Nakata] 

– GPU: MBLAS (NVIDIA GPUs) [Nakata], Quadruple precision GEMM 

(AMD GPUs) [Nakasato 2011], Triple and quadruple precision AXPY, 

GEMV and GEMM (NVIDIA GPUs) [Mukunoki 2012] 
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Triple and Quadruple Precision Formats 
• DD (Double-Double) type quadruple precision represents 

one quadruple precision value 𝒂 using two double 

precision values 𝒂𝒉𝒊 and 𝒂𝒍𝒐: 

          𝒂 = 𝒂𝒉𝒊 + 𝒂𝒍𝒐, where |𝒂𝒍𝒐| ≤ 𝟎. 𝟓ulp(𝒂𝒉𝒊) 
 

 

 

• D+S (Double+Single) type triple precision represents 

one triple precision value 𝒂 using one double precision 

value 𝒂𝒉𝒊 and one single precision value 𝒂𝒍𝒐: 

          𝒂 = 𝒂𝒉𝒊 + 𝒂𝒍𝒐, where |𝒂𝒍𝒐| ≤ 𝟎. 𝟓ulp(𝒂𝒉𝒊) 

𝒂𝒍𝒐 (52 bits) 

Significand (52+52=104 bits) Exponent (11 bits) 
Sign 

(1 bit) 

𝒂𝒉𝒊 (52 bits) 𝒂𝒍𝒐 (23 bits) 

Significand (52+23=75 bits) Exponent (8 bits) Sign 

(1 bit) 

† Exponent is 8 bits: size of exponent depends on lower part’s exponent 

𝒂𝒉𝒊 (52 bits) 
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Relative Execution Time on Tesla C2050 

• Computation cost of triple and quadruple precision subroutines is 

20x more than double precision subroutines in theory. 

• But only 1.6-1.7x (triple) and 2.1x (quadruple) of double in practice. 

• Triple and quadruple precision AXPY and GEMV are memory-bound 

on the GPU (evident from Bytes/Flop ratios of GPU and subroutines). 
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• GEMM is compute-bound in all precision on the GPU. 

• Computation cost of DD-type operations is 20x more 

than double precision in theory, but only 13x slower in 

practice. 
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Overview of CUMP 

• CUMP is a free library for arbitrary precision 

arithmetic on CUDA, operating on floating point 

numbers. 

• It is based on the GMP, and its functions have a 

GMP-like regular interface.  

• Three arithmetic operations (addition, subtraction, 

and multiplication) are currently available. 

• Available at 

http://www.hpcs.cs.tsukuba.ac.jp/~nakayama/cump/ 
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Performance Results for 

Elementwise Addition 
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• For vector size N >= 24576, CUMP on GPUs (GTX580 
and C2050) is faster than GMP on CPUs (Core i7 920 and 
Opteron 6134 x 2). 
 

† Graphs courtesy of http://www.hpcs.cs.tsukuba.ac.jp/~nakayama/cump/ 



Performance Results for 

Elementwise Multiplication 
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• For 1,000 decimal digit numbers, GMP on CPU (Opteron 

6134 x 2) is faster than CUMP on GPUs. 

• CUMP does not support fast multiplication algorithms 

(e.g., Karatsuba, Toom-Cook  and FFT). 

† Graphs courtesy of http://www.hpcs.cs.tsukuba.ac.jp/~nakayama/cump/ 



Summary (1/2) 

• We briefly introduced the FFTE library and 

performance results of parallel 1-D FFT on the K 

computer. 

• The performance of the recursive six-step FFT-

based parallel FFT remains at a high level even 

for larger problem sizes due to the recursive 

approach and the cache blocking. 

• Global FFT on the K computer (82,944 nodes) 

achieved first place (205.9 TFlops) in the 2012 

HPC Challenge Class 1 Awards. 
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Summary (2/2) 

• High precision arithmetic operations will become 

increasingly necessary for emerging Exa-scale 

computing era. 

• Accelerators (GPUs and MICs, etc.) are a good 

candidate for high precision arithmetic 

operations. 

• Triple precision is useful for memory-bound 

operations, in cases where quadruple precision 

is not required, but double precision is not 

sufficient. 
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