
XcalableMP parallel language project

Mitsuhisa Sato

Professor of Center for Computational Science (CCS),

 University of Tsukuba,

Team leader of programming environment research team,

 Advanced Institute for Computational Science (AICS), RIKEN

0

1

Outline

 Motivation and Background

 Project organization

 A short history of programming language research in Japan

 Some thoughts about HPF

 XcalableMP PGAS parallel programming language

 Basic model and concept

 Overview of specification

 performance on the K computer

 Related researches and projects

 Summary

Why do we need parallel programming
language researches?

 In 90's, many programming
languages were proposed.

 but, none of them has prevailed.

 MPI is dominant programming in a
distributed memory system

 low productivity and high cost

 No standard parallel programming
language for HPC

 only MPI

 PGAS is now emerging, …

2 2

 Current solution for programming
clusters?! int array[YMAX][XMAX];

main(int argc, char**argv){

int i,j,res,temp_res, dx,llimit,ulimit,size,rank;

MPI_Init(argc, argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Comm_size(MPI_COMM_WORLD, &size);

dx = YMAX/size;

llimit = rank * dx;

if(rank != (size - 1)) ulimit = llimit + dx;

else ulimit = YMAX;

temp_res = 0;

for(i = llimit; i < ulimit; i++)

for(j = 0; j < 10; j++){

array[i][j] = func(i, j);

temp_res += array[i][j];

}

MPI_Allreduce(&temp_res, &res, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);

MPI_Finalize();

}

Only way to program is MPI,
but MPI programming seems
difficult, … we have to
rewrite almost entire
program and it is time-
consuming and hard to
debug… mmm

We need better solutions!!
#pragma xmp template T[10]

#pragma xmp distributed T[block]

int array[10][10];

#pragma xmp aligned array[i][*] to T[i]

main(){

int i, j, res;

res = 0;

#pragma xmp loop on T[i] reduction(+:res)

for(i = 0; i < 10; i++)

for(j = 0; j < 10; j++){

array[i][j] = func(i, j);

res += array[i][j];

}

}

add to the serial code :

incremental parallelization

data distribution

work sharing and data
synchronization

We want better solutions
… to enable step-by-step
parallel programming from
the existing codes, …
easy-to-use and easy-to-
tune-performance …
portable … good for
beginners.

is our solution!

3

What’s XcalableMP?

 XcalableMP (XMP for short) is:
 A programming model and language for distributed memory , proposed by XMP WG

 http://www.xcalablemp.org

 XcalableMP Specification Working Group (XMP WG)

 XMP WG is a special interest group, which organized to make a draft on “petascale” parallel

language.

 Started from December 2007, the meeting is held about once in every month.

 Mainly active in Japan, but open for everybody.

 XMP WG Members (the list of initial members)

 Academia: M. Sato, T. Boku (compiler and system, U. Tsukuba), K. Nakajima (app. and
programming, U. Tokyo), Nanri (system, Kyusyu U.), Okabe (HPF, Kyoto U.)

 Research Lab.: Watanabe and Yokokawa (RIKEN), Sakagami (app. and HPF, NIFS), Matsuo
(app., JAXA), Uehara (app., JAMSTEC/ES)

 Industries: Iwashita and Hotta (HPF and XPFortran, Fujitsu), Murai and Seo (HPF, NEC),
Anzaki and Negishi (Hitachi), (many HPF developers!)

 A prototype XMP compiler is being developed by U. of Tsukuba and Riken AICS.

 XMP is proposed for a programming language for the K computer, supported by the
programming environment research team.

4

 VPPFortran for NWT (VPP500)
 NWT(Numerical Wind Tunnel), a parallel Vector machine for

CFD, 1st machine in Top500 (1993/Nov to 1995/Nov)

 Fortran extensions for NWT, specifying global and local
memory dedicated to VPP, proposed by Fujitsu

 Renamed to XPFortran as a Fujistu product

 HPF for Earth Simulator (SX-6)
 ES, 1st machine in Top500 (2002-2004/June)

 NEC has been supporting HPF for Earth Simulator System.

 Japan HPF promotion consortium was organized by NEC,
Hitatchi, Fujitsu …

 Activities and many workshops: HPF Users Group Meeting
(HUG from 1996-2000), HFP intl. workshop (in Japan, 2002
and 2005)

The history of HPC language projects in Japan

Dr. Miyoshi

VPP500

5

HPF2.0 and HPF Activity in Japan

 Japanese supercomputer venders were interested in HPF and developed
HPF compiler on their systems.

 HPF 2.0 (approved extension)
 Independent & on clause

 Shadow

 GenBlock

 HPF/JA proposal by Japan

 HPF promotion consortium
 Reduction kind

 Reflect

 Local

 Full shadow

 HPF/ES extension by NEC

 for Earth Simulator System.
 helo

 Paralle I/O

• LOCAL & REFLECT

• Reduction Kind

• ON

• GEN_BLOCK

• SHADOW

• Remapping

• INDIRECT

• Mapped Pointer

• Mapped Derived Type Component

• HALO

• Vectorization Directives

• Automatic Parallelization

HPF2.0

(core)

• Task Parallelism

• RANGE

• etc.

• Comm. Schedule Reuse

• Asynchronous Comm.

• etc.

Approved Extensions

HPF/JA

Features of HPF/SX V2

HPF experience with IMPACT-3D

 IMPACT-3D: an implosion analysis code using TVD
scheme

 three-dimensional compressible and inviscid Eulerian fluid
computation with the explicit 5-point stencil scheme for spatial
differentiation

 fractional time step for time integration.

 Gordon Bell winners of SC 2002

 For achieving 14.9 TFLOPS on

the Earth Simluator System with

the IMPACT-3D code,

written in High Performance Fortran (HPF)

Parallelization of IMPACT-3D using HPF

 Parallelization only by DISTRIBUTE and SHADOW

 Block distribution on the last (third) dimension of each arrays

 Add shadow on the third dimension

 All loops are parallelized by the HPF/ES compiler

 12.5TFLOPS (efficiency 38％) by 512 node(4096CPU) with
mesh-size 2048x2048x4096

7 2
0
1
0

年
2

月
4
日

!HPF$ distribute (*,*,block) ::

!HPF$& sr,se,sm,sp,sn,sl,

!HPF$& walfa1,walfa2,walfa3,walfa4,walfa5,

!HPF$& wnue1,wnue2,wnue3,wnue4,wnue5,

 ...

!HPF$ shadow (0,0,0:1) ::

!HPF$& sr,se,sm,sp,sn,sl,

!HPF$& wg1,wg2,wg3,wg4,wg5,

!HPF$& wtmp1,wtmp2,wtmp3

Optimization by HPF/JA extensions

 Optimize communication by REFLECT and LOCAL

 REFLECT explicitly updates SHADOW, with re-use of communication

schedule

 The LOCAL directive guarantees the accesses to arrays in a list do not
require inter-processor communications.

 The user can eliminate redundant communications for the shadow area
by the combined use of the REFLECT and LOCAL directives.

 14.9TFLOPS (efficiency 45％) by 512 node(4096CPU) with
mesh-size 2048x2048x4096

8

!HPFJ reflect sr, sm, sp, se, sn, sl

 do iz = 1, lz-1

!HPF$ on home(sm(:,:,iz)), local begin

 do iy = 1, ly

 do ix = 1, lx

 wu0 = sm(ix,iy,iz) / sr(ix,iy,iz)

 wu1 = sm(ix,iy,iz+1) / sr(ix,iy,iz+1)

 wv0 = sn(ix,iy,iz) / sr(ix,iy,iz)

 ...

※ MPI15.3TFLOPS

Scalability of IMPACT-3D in ES

9

Mesh Size
1024x1024x2048

改良版

通常版

MPI

HPF
opt

HPF

Lessons learned from HPF

 “Ideal” design policy of HPF

 A user gives a small information such as data distribution and parallelism.

 The compiler is expected to generate “good” communication and work-sharing
automatically.

 No explicit mean for performance tuning .
 Everything depends on compiler optimization.

 Users can specify more detail directives, but no information how much
performance improvement will be obtained by additional informations

 INDEPENDENT for parallel loop

 SHADOW & RELECT, ON HOME, LOCAL, …

 The performance is too much dependent on the compiler quality, resulting in
“incompatibility” due to compilers.

 Lesson :“Specification must be clear. Programmers want to know what
happens by giving directives”

 The way for tuning performance should be provided.

10

Performance-awareness: This is one of the most

important lessons for the design of XcalableMP

“The Rise and Fall of High Performance Fortran … ”
 by Kennedy, Koelbel and Zima [HOPL 2007]

 A very highly suggestive literature for language projects

 We would focus on this point:

11

The difficulty was that there were only limited ways for a user to

exercise fine-grained control over the code generated once the source of

performance bottlenecks was identified, … The HPF/JA extensions

ameliorated this a bit by providing more control over locality. However,

it is clear that additional features are needed in the language design to

override the compiler actions where that is necessary. Otherwise, the

user is relegated to solving a complicated inverse problem in which he

or she makes small changes to the distribution and loop structure in

hopes of tricking the compiler into doing what is needed.

What is different from at the time of HPF?

 Explicit message-passing using MPI still remains the dominant
programming system for scalable applications (more than at the time of
HPF?)

 Many software stacks on top of MPI (Apps framework libraries, …)

 Fortran 90 is mature enough now. C (and C++) is used for HPC apps.

 OpenMP supports both.

 Large-scale systems are more popular (BlueGene, the K-computer, …)

 Multicore and GPGPU/manycore make parallel programming more
complicated.

 PGAS is emerging and geting attentions from the community
 Model for scalable communication (than MPI?)

12

13

 A PGAS language. Directive-based language extensions
for Fortran and C for the XMP PGAS model

 To reduce the cost of code-rewriting and education

 Global view programming with global-view distributed
data structures for data parallelism

 A set of threads are started as a logical task. Work mapping
constructs are used to map works and iteration with affinity
to data explicitly.

 Rich communication and sync directives such as “gmove”
and “shadow”.

 Many concepts are inherited from HPF

 Co-array feature of CAF is adopted as a part of the
language spec for local view programming (also
defined in C).

directives

Comm, sync and work-sharing

Duplicated execution

node0 node1 node2

XcalableMP : directive-based language eXtension
for Scalable and performance-aware Parallel Programming

http://www.xcalablemp.org

int array[N];

#pragma xmp nodes p(4)

#pragma xmp template t(N)

#pragma xmp distribute t(block) on p

#pragma xmp align array[i][with t(i)

#pragma xmp loop on t(i) reduction(+:res)

 for(i = 0; i < 10; i++)

 array[i] = func(i,);

 res += …;

 } }

14 XMP project

XcalableMP Code Example (Fortran)

program xmp_example

Integer array(XMAX,MAX)

!$XMP nodes p(4)

!$XMP template t(YMAX)

!$XMP distribute t(block) onto p

!$XMP align array(*,j) with t(j)

 integer :: i, j, res

 res = 0

!$XMP loop on t(j) reduction(+:res)

 do j = 1, 10

 do I = 1, 10

 array(I,j) = func(i, j)

 res += array(I,j)

 enddo

 enddo

add to the serial code : incremental parallelization

data distribution

work mapping and data synchronization

XcalableMP Code Example (C)

15 XMP project

int array[YMAX][XMAX];

#pragma xmp nodes p(4)

#pragma xmp template t(YMAX)

#pragma xmp distribute t(block) on p

#pragma xmp align array[i][*] with t(i)

main(){

 int i, j, res;

 res = 0;

#pragma xmp loop on t(i) reduction(+:res)

 for(i = 0; i < 10; i++)

 for(j = 0; j < 10; j++){

 array[i][j] = func(i, j);

 res += array[i][j];

 }

}

add to the serial code : incremental parallelization

data distribution

work mapping and data synchronization

16
XMP project

Overview of XcalableMP

 XMP supports typical data parallelization with the description of data
distribution and work mapping under "global view“

 Some sequential code can be parallelized with directives, like OpenMP.

 XMP also includes Co-array notation of PGAS (Partitioned Global Address
Space) feature as "local view" programming.

Two-sided comm. (MPI)
One-sided comm.

(remote memory access)

Global view Directives

Local view
Directives

(Coarray/PGAS)

Parallel platform (hardware+OS)

MPI
Interface

Array section
in C/C++

XMP
runtime
libraries

XMP parallel execution model

User applications

•Support common pattern
(communication and work-
sharing) for data parallel
programming
•Reduction and scatter/gather
•Communication of sleeve area
•Like OpenMPD, HPF/JA, XFP

17 XMP project

Nodes, templates and data/loop
distributions

 Idea inherited from HPF (and Fortran-D)
 Node is an abstraction of processor and memory in distributed memory

environment, declared by node directive.

 Template is used as a dummy array distributed on nodes

 A global data is
 aligned to the template

 Loop iteration must also be
 aligned to the template
 by on-clause.

variable

V1

variable

V2

template

T1

nodes

P

Distribute directive

Align

directive

loop

L1

Loop

directive

variable

V3

template

T2

loop

L2

loop

L3
Align

directive

Align

directive

Loop

directive

Loop

directive

Distribute directive

#pragma xmp nodes p(32)
#pragma xmp nodes p(*)

#pragma xmp template t(100)
#pragma distribute t(block) onto p

#pragma xmp align array[i][*] with t(i)

#pragma xmp loop on t(i)

18 XMP project

Array data distribution

 The following directives specify a data distribution among nodes
 #pragma xmp nodes p(*)
 #pragma xmp template T(0:15)
 #pragma xmp distribute T(block) on p
 #pragma xmp align array[i] with T(i)

node1

node2

node3

node0

array[]

Reference to assigned to other

nodes may causes error!!

Control computation: Assign loop iteration
to nodes which compute own data

Explicit Communication between nodes This is different from
HPF and UPC

19
XMP project

Parallel Execution of “for” loop

array[]

node1

node2

node3

node0

 Execute for loop to compute on array

Data region to be computed

by for loop

Execute “for” loop in parallel with affinity to array distribution by on-clause：
 #pragma xmp loop on t(i)

distributed array

#pragma xmp loop on t(i)

for(i=2; i <=10; i++)

#pragma xmp nodes p(*)
#pragma xmp template T(0:15)
#pragma xmp distributed T(block) onto p
#pragma xmp align array[i] with T(i)

Similar to UPC forall

20 XMP project

Shadow and reflect: Data synchronization of array

 Exchange data only on “shadow” (sleeve) region
 If neighbor data is required to communicate, then only sleeve

area can be considered.

 example：b[i] = array[i-1] + array[i+1]

node1

node2

node3

node0

array[]

Programmer specifies sleeve region explicitly

Directive：#pragma xmp reflect array

#pragma xmp shadow array[1:1]

#pragma xmp align array[i] with t(i)

21 XMP project

XcalableMP Global view directives

 Execution only master node
 #pragma xmp block on master

 Broadcast from master node
 #pragma xmp bcast (var)

 Barrier/Reduction
 #pragma xmp reduction (op: var)
 #pragma xmp barrier

 Global data move directives for collective comm./get/put

 Task parallelism
 #pragma xmp task on node-set

22 XMP project

gmove directive

 The "gmove" construct copies data of distributed arrays in
global-view.

 When no option is specified, the copy operation is performed collectively
by all nodes in the executing node set.

 If an "in" or "out" clause is specified, the copy operation should be done
by one-side communication ("get" and "put") for remote memory access.

!$xmp nodes p(*)

!$xmp template t(N)

!$xmp distribute t(block) to p

real A(N,N),B(N,N),C(N,N)

!$xmp align A(i,*), B(i,*),C(*,i) with t(i)

 A(1) = B(20) // it may cause error

!$xmp gmove

 A(1:N-2,:) = B(2:N-1,:) // shift operation

!$xmp gmove

 C(:,:) = A(:,:) // all-to-all

!$xmp gmove out

 X(1:10) = B(1:10,1) // done by put operation

n
o
d
e
1

n
o
d
e
2

n
o
d
e
3

n
o
d
e
4

n
o
d
e
1

n
o
d
e
2

n
o
d
e
3

n
o
d
e
4

node1

node2

 node3

node4

A B

C

23 XMP project

Co-array: XcalableMP Local view programming

 XcalableMP also includes CAF-like PGAS (Partitioned Global Address Space)
feature as "local view" programming.

 The basic execution model of XcalableMP is SPMD

 Each node executes the program independently on local data if no directive

 We adopt Co-Array as our PGAS feature.

 In C language, we propose array section construct (the same as Intel’s)

 Can be useful to optimize communications

 Support alias Global view to Local view

int A[10], B[10];

#pragma xmp coarray [*]: A, B

…

A[:] = B[:]:[10]; // broadcast

int A[10]:

int B[5];

A[5:5] = B[0:5];

Array section in C Co-array in C

Research Agenda of XcalableMP
for the K computer

 Exploiting network topology

 It is found that the layout of nodes is very important to optimize
communications in Tofu network (3D-torus)

 Use node directive to describe the network topology.

 Optimization for one-sided communication

 Design of one-sided communication layer using “Tofu” native library

 Exploiting Multi-node task group for multi-physics/multi-domain
problems

 XMP can define “nodes groups”

 Extensions for multicore

 The K computer is a multi-core parallel system.

 Flat-MPI can not be used any more …

 Automatic parallelizing compiler is available, but …

 Mixed with OpenMP

 Autoscoping

24 XMP project

Research Agenda of XcalableMP

 Interface to existing (MPI) libraries, Mixed with MPI

 Rewriting every problem in XMP is not realistic.

 Use of existing high performance parallel libraries written in MPI is crucial.

 We are working on the design of interfaces for Scalapack, MUMPS, … etc.

 XMP IO

 IO for distributed array

 Interface to MPI-IO, netCDF, HDF5, …

25 XMP project

 What is SCALEp

 SCALE project: (Parallel) Climate code for large eddy
simulation

 SCALEp is a kinetic core in SCALE

 A typical stencil computation

 How to parallelize

1. 2D block distribution of 3D array.

2. Paralleling double nested loop by loop directives

3. Insert reflect directives for the communication periodic
neighbor elements.

 Options: Runtime optimization using RDMA of K
computer for neighbor communications

26

Experience on the K computer
Parallelization of SCALEp by XMP

27

Parallelization of SCALEp by XMP

!$xmp nodes p(N1,N2)
!$xmp template t(IA,JA)
!$xmp distribute t(block,block) onto p

real(8) :: dens(0:KA,IA,JA)
!$xmp align (*,i,j) &
!$xmp with t(i,j) :: dens, ...
!$xmp shadow (0,2,2) :: dens, ...

!$xmp reflect (dens(0,/periodic/2,&
!$xmp /periodic/2), ...)
!$xmp loop (ix,jy) on t(ix,jy)
do jy = JS, JE
 do ix = IS, IE
 do kz = KS+2, KE-2
 ... dens(kz,ix+1,jy) ...
 end do
 end do
end do

Data distribution

Neighbor comm

Loop paralization

Declarations for
Node array and
template

Performance results of K computer

28

0

50

100

150

200

250

0 50 100 150 200 250

S
p

e
e
d
u
p
 (
s
in

g
le

=
1
)

Number of Nodes

XMP

RDMA

MPI

 Size horizontal 512x512, vertical128

 Execution time for 500 steps.

 Assign XMP node to one node. Local program is parallelized by
automatic paralleling compiler by Fujitsu.

 We can improve performance using RDMA of the K computer

29

HPCC Class2 competition

 XMP (U. Tsukuba and RIKEN AICS team)
won HPCC Class2 Awards in SC13.

 Implementation and performance
evaluation on the K computer

 HPC Challenge Benchmarks:
 HPL，FFT，RandomAccess，Stream

 Class 1 for Performance

 Class 2 for Productivity of Prog. Language
(Performance and Elegance)

Benchmark # Nodes Performance SLOC

HPL 16,384 933.8 TFlops (44.5% of peak) 306

RandomAccess 16,384 162.6 GUPs 250

FFT 36,864 50.1 TFlops (1.1% of peak) 239 + 283 + 1892

STREAM 16,384 481.8 TB/s 66

HIMENO 82,944 1.3 PFlops (12.7% of peak) 137

Full compute nodes

50.1 TFlops,

1.1% of peak,

36,864 nodes

(294,912 Cores)

P
e
rf

o
rm

a
n
c
e
 (

T
F

lo
p
s
)

Number of CPU Cores

Results(2/3)

FFT (1 process/node with 8
threads)

30

STREAM (1 process/node with 8
threads)

Number of CPU Cores

481.8 TB/s,

16,384 nodes

(131,072 Cores)
P

e
rf

o
rm

a
n
c
e
 (

T
B

/s
)

XcalableMP(XMP) http://www.xcalablemp.org

 What’s XcalableMP (XMP for short)?
 A PGAS programming model and language for

distributed memory , proposed by XMP Spec WG

 XMP Spec WG is a special interest group to design
and draft the specification of XcalableMP language.
It is now organized under PC Cluster Consortium,
Japan. Mainly active in Japan, but open for
everybody.

 Project status (as of Nov. 2013)
 XMP Spec Version 1.2 is available at XMP site.

new features: mixed OpenMP and OpenACC ,
libraries for collective communications.

 Reference implementation by U. Tsukuba and Riken
AICS: Version 0.7 (C and Fortran90) is available
for PC clusters, Cray XT and K computer. Source-
to- Source compiler to code with the runtime on top
of MPI and GasNet.

31

P
o
ss

ib
lit

y
o
f

P
e
rf

o
rm

a
n
ce

 t
u
n
in

g

Programming cost

MPI

Automatic
parallelization

PGAS

HPF

chapel

XcalableMPXcalableMP

int array[YMAX][XMAX];

#pragma xmp nodes p(4)

#pragma xmp template t(YMAX)

#pragma xmp distribute t(block) on p

#pragma xmp align array[i][*] to t(i)

main(){

int i, j, res;

res = 0;

#pragma xmp loop on t(i) reduction(+:res)

for(i = 0; i < 10; i++)

for(j = 0; j < 10; j++){

array[i][j] = func(i, j);

res += array[i][j];

}

}

add to the serial code : incremental parallelization

data distribution

work sharing and data synchronization

 Language Features
 Directive-based language extensions for Fortran

and C for PGAS model

 Global view programming with global-view
distributed data structures for data parallelism

 SPMD execution model as MPI

 pragmas for data distribution of global array.

 Work mapping constructs to map works and
iteration with affinity to data explicitly.

 Rich communication and sync directives such as
“gmove” and “shadow”.

 Many concepts are inherited from HPF

 Co-array feature of CAF is adopted as a part of the
language spec for local view programming (also
defined in C).

XMP provides a global
view for data parallel

program in PGAS model

Code example

slide at SC12 PGAS BoF

Researches and projects related to XMP

 XMP extension for GPU: XMP-dev and
XMP/OpenACC integration (JST CREST)

 FP2C (Framework for Post-Petascale
Computing) : the multilevel
programming as a solution for post-
petascale system (FP3C Japan-French
project)

 Integration with YML flow lang.

 XMP/StarPU integration scheduling CPU/GPU

 Porting to other platform

 NEC SX, IBM BG/Q

 Optimization for Intel Xeon Phi

 User-defined Distribution ...

 Dynamic Tasking with XMP

 32

CPU

GPU

CPU

GPU

CPU

GPU

CPU

GPU

CPU

GPU

CPU

GPU

CPU

GPU

CPU

GPU

CPU

GPU

CPU

GPU

CPU

GPU

CPU

GPU

CPU

GPU

CPU

GPU

CPU

GPU

CPU

GPU

#pragma xmp nodes p(4, 4)

#pragma xmp template t(0:99, 0:99)
#pragma xmp distribute t(BLOCK, BLOCK) onto p

double b[100][100];
#pragma xmp align b[i][j] with t(j, i)

double a[100][100];
#pragma xmp align a[i][j] with t(j, i)
#pragma xmp device allocate a

#pragma xmp (i, j) loop on t(j, i)
for (i =0; i < 100; i++)
for (j =0; j < 100; j++) ... = b[i][j];

#pragma xmp device (i, j) loop on t(j, i)
for (i =0; i < 100; i++)
for (j =0; j < 100; j++) a[i][j] = ...;

DEVICE (GPU)

HOST (CPU)

Template

Node

#pragma xmp gmove
b[:][:] = a[:][:];

<TASK 2> <TASK 3> <TASK 4>

<TASK 5> <TASK 6>

<TASK 1>

<TASK 7>

NODE NODE NODE

NODE NODE NODE

for(i=0;i<n;i++){
for(j=0;j<n;j++){

tmp[i][j]=0.0;
#pragma xmp loop (k) on t(k)

for(k=0;k<n;k++){
tmp[i][j]+=(m1[i][k]*m2[k][j]);

}}}
#pragma xmp reduction (+:tmp)

Each task is a parallel program over several nodes.
XMP language can be used to descript parallel program easily!

YML provides a workflow programming
environment and high level graph description
language called YvetteML

OpenMP
GPGPU

etc...

YML workflow
programming Parallel components

(task) by XcalableMP

XMP extensions for
StarPU runtime

XMP-dev: XcalableMP acceleration
device extension

 Offloading a set of distributed array and operation to a
cluster of GPU

33 XMP project

CPU

GPU

CPU

GPU

CPU

GPU

CPU

GPU

CPU

GPU

CPU

GPU

CPU

GPU

CPU

GPU

CPU

GPU

CPU

GPU

CPU

GPU

CPU

GPU

CPU

GPU

CPU

GPU

CPU

GPU

CPU

GPU

#pragma xmp nodes p(4, 4)

#pragma xmp template t(0:99, 0:99)
#pragma xmp distribute t(BLOCK, BLOCK) onto p

double b[100][100];
#pragma xmp align b[i][j] with t(j, i)

double a[100][100];
#pragma xmp align a[i][j] with t(j, i)
#pragma xmp device allocate a

#pragma xmp (i, j) loop on t(j, i)
for (i =0; i < 100; i++)
for (j =0; j < 100; j++) ... = b[i][j];

#pragma xmp device (i, j) loop on t(j, i)
for (i =0; i < 100; i++)
for (j =0; j < 100; j++) a[i][j] = ...;

DEVICE (GPU)

HOST (CPU)

Template

Node

#pragma xmp gmove
b[:][:] = a[:][:];

FP3C A Selected Project Main Result in FP3C project

 FP2C (Framework for Post-Petascale Computing) : the multilevel
programming as a solution for post-petascale system and
XMP/StarPU integration

 Enables to make use of a huge number of processors and attached accelerators in
an efficient and hierarchical way.

 Parallel algorithms in YML workflow language with parallel components written by
XcalableMP (XMP) and its accelerators extensions supported by StarPU runtime
technology in XMP language.

 New algorithms implemented using this paradigm and evaluated on “K” RIKEN
supercomputer in Kobe and the Hooper supercomputer in USA.

34

<TASK 2> <TASK 3> <TASK 4>

<TASK 5> <TASK 6>

<TASK 1>

<TASK 7>

NODE NODE NODE

NODE NODE NODE

for(i=0;i<n;i++){
for(j=0;j<n;j++){

tmp[i][j]=0.0;
#pragma xmp loop (k) on t(k)

for(k=0;k<n;k++){
tmp[i][j]+=(m1[i][k]*m2[k][j]);

}}}
#pragma xmp reduction (+:tmp)

Each task is a parallel program over several nodes.
XMP language can be used to descript parallel program easily!

YML provides a workflow programming
environment and high level graph description
language called YvetteML

OpenMP
GPGPU

etc...

YML workflow
programming Parallel components

(task) by XcalableMP

XMP extensions for
StarPU runtime

 Programming environment researches for peta-scale
systems

 XcalableMP PGAS parallel programming language for better
“productive” parallel programming than “MPI”.

 “downgraded HPF” as a reflection of HPF experience in Japan

 We expect that the PGAS runtime will improve the performance of
larger-scale parallel programs in the K computer.

 XMP is also proposed for HPCI-FS accelerator
architecture.

35

Concluding Remarks

Thank you for your attention!

36

37

リファレンス実装について

 Omni XMP Compiler v0.6.1をリリース（2013年3月）
 Coarray機能のストライド通信の対応

 京コンピュータにおけるCoarray機能のサポート

 http://www.hpcs.cs.tsukuba.ac.jp/omni-compiler/xcalablemp/

 2013年11月にOmni XMP Compiler v0.7をリリース

 OpenMP指示文やOpenACC指示文との混在利用

 京コンピュータにおけるハードウェア
サポートを利用した実装

 XMP/Fortranの片側通信機能の
サポートは、未

