Large-Scale First Principles Calculations of Future Nano-Devices

Kenji Shiraishi

Nagoya University

and

University of Tsukuba

Contents

- Large Scale First Principles Calculations of Si Nanowire by Real Space Density Functional Theory (RSDFT)
- Realization of Mass Production of Modern Nano Devices Based on First Principles Calculations
 - •MONOS memory (Memory for Automobile)
 - •High-k LSI (Modern LSI (very common)
- Summary

1. Si Nanowire (The future technology)

Conventional Planer MOSFET

Development of electric circuit on LSI is governed by the downsizing of MOSFET (Gate length is less than 50nm) However, downscaling will end during 2020 and 2030

Downscaling \rightarrow Serious increase in leakage current

To suppress leakage current, Si nanowire FET is ideal structure. Due to the electromagnetic analysis

Nano: Quantum Mechanics is inevitable

First principles electronic structure calculations are necessary for designing Si nanowire FET

Experiment of Si nanowire FET

Actually, suppressing leakage current is realized

Next generation MOSFET

However, quantum mechanical designing is necessary for development of Si nanowire FET

Large-scale first principles calculation is the key method!

To realize large scale first principles program code

Collaboration with Computer Science Group Is necessary!!

Density functional theory with real space calculation suited for super parallel machine (to avoid FFT which need all to all communication)

New Algorism for super parallel machine (PACS-CS)

Massive Pararel algorism of Gram-Schmit Orthogonalization (with High Performance Computation Group) J-I. Iwata et al. J. Comp. Phys. 2010.

	Time (sec)	GFLOPS/node
Old algorithm	661	0.70
New algorithm	111	4.30

Peak of PACS-CS = 5.6 GFLOPS/node

80%~90% of PACS-CS Peak

 $\psi_{1}' = \psi_{1}$ $\psi_{2}' = \psi_{2} - \psi_{1}' \langle \psi_{1}' | \psi_{2} \rangle$ $W_{3}' = \psi_{3} - \psi_{1}' \langle \psi_{1}' | \psi_{3} \rangle - \psi_{2}' \langle \psi_{2}' | \psi_{3} \rangle$ $\psi_{4}' = \psi_{4} - \frac{\psi_{1}' \langle \psi_{1}' | \psi_{4} \rangle - \psi_{2}' \langle \psi_{2}' | \psi_{4} \rangle - \psi_{3}' \langle \psi_{3}' | \psi_{4} \rangle}{\psi_{3}' | \psi_{4} \rangle}$ $W_{5}' = \psi_{5} - \frac{\psi_{1}' \langle \psi_{1}' | \psi_{5} \rangle - \psi_{2}' \langle \psi_{2}' | \psi_{5} \rangle - \psi_{3}' \langle \psi_{3}' | \psi_{5} \rangle}{\psi_{6}' = \psi_{6} - \frac{\psi_{1}' \langle \psi_{1}' | \psi_{6} \rangle - \psi_{2}' \langle \psi_{2}' | \psi_{6} \rangle - \psi_{3}' \langle \psi_{3}' | \psi_{6} \rangle}{\psi_{3}' | \psi_{6} \rangle} - \psi_{4}' \langle \psi_{4}' | \psi_{6} \rangle - \psi_{5}' \langle \psi_{5}' | \psi_{6} \rangle$ Matrix Products Blass 3 is available T. Yokozawa, D. Takahashi, T. Boku and M. Sato, (PMAA'06), (2006) $-\psi_{4}' \langle \psi_{4}' | \psi_{6} \rangle - \psi_{5}' \langle \psi_{5}' | \psi_{6} \rangle$

Electronic Structures of Si Nanowires

J-I. Iwata et al. J. Comp. Phys. (2010)

Diameter 8nm Lentgth 0.5 nm (1525atoms) Average daiameter10nm+randumness length 3 nm (14,366 atoms)

In 2011, 100,000 atoms electronic structure calculation is performed by K computer \rightarrow Gordon Bell prize (2011)

Density of States obtained by large scale RSDFT calculations

Iwata et al. J. Comp. Phys. 2010

Contents

- Large Scale First Principles Calculations by Real Space Density Functional Theory (RSDFT)
- Realization of Mass Production of Modern Nano Devices Based on First Principles Calculations
 - •MONOS memory (Memory for Automobile)
 - •High-k LSI (Modern LSI (very common)
- Interdisiplinary Collaboration toward New Astrob iology

MONOS-type Memories

(K. Yamaguchi et al. IEDM 2009, IEDM 2010, JJAP 2011, etc)

Message

- We have clarify the detailed atomistic behavior of defects of MONOS memory by the *ab initio* calculation.
- The excess O atoms cause an irreversible structural change in the SiN layer.
- →The suppression of excess O atoms is effective to improve the MONOS characteristic.

 Defects with Jahn-Teller effect are the most suitable for charge-trap memories.

Conventional Flash memory and MONOS memory

Dielectric breakdown

Purpose of our studies

We studied atomistic structural change of defects in SiN layers during Program/Erase cycles using first principles calculations.

We design defects which are suitable for charge trap memories.

Reversible	
(suitable)	

Irreversible (not suitable)

There are two type structural change during P/E cycles.

Reversible structural change

Reversible structural change

Reversible structural change

This structural change is reversible during P/E cycles → No degradation of memory

Irreversible structural change

Irreversible structural change

Irreversible structural change

This structural change is irreversible during P/E cycles. → Memory degradation

Two-types of structural change

Reversible (suitable)

Irreversible (not suitable)

We investigated how to design reversible type defects. 22

Experimental knowledge

T. Ishida, et al., Proc. IRPS, 2006

Chemical composition and electronic occupation defect density for the depth direction of the SiN film

Chemical composition

A lot of O atoms are in SiO2/SiN interfaces

Electronic occupation defect density

Chemical composition and electronic occupation defect density for the depth direction of the SiN film

M. Miura, et al., IEICE Technical Report SDM2007-34

Chemical composition and electronic occupation defect density for the depth direction of the SiN film

Chemical composition

A lot of O atoms are in SiO2/SiN interfaces

Electronic occupation defect density

Occupation defects exist in same region with O atoms

M. Miura, et al., IEICE Technical Report SDM2007-34

Much of charge traps is necessary for charge trap memory. O atoms make charge traps in SiN.

O atoms are important in MONOS

Summary of experimental report

- 1. O inter-diffusion is observed at SiN/SiO₂ interfaces.
- 2. Lots of defects are located in the O containing interfacial SiN regions.
- 3. Electron traps are localized near SiN/SiO2 interfaces. But hole traps are distributed both interface and the central part

84 atoms

We prepare the calculation models that Si3N4 84 atoms cell.

N & O

A defect with two substitutional O atoms at N sites.

This is the model of excess O atoms in SiN.

A defect with a N vacancy.

A defect with a N vacancy with one O atom.

Three Calculation Models

A defect with two substitutional O atoms at N sites.

This is the model of excess O atoms in SiN.

A defect with a N vacancy.

A defect with a N vacancy with one O atom.
The calculation of P/E operation

We investigated atomic and electronic structural change during Program/Erase operations (carrier injection & removal).

Calculation Method

- First principle calculation
- Generalized gradient approximation
- Ultra-soft pseudo-potential

Formation Energy Diagram (example)

The charged state with the lowest energy is the optimal state at each Fermi energy.

Only hole trapped state is possible Only electron trapped state is possible

Both electron and hole trapped states are possible

0

Fermi Energy

Energy

Formation

Λ

Formation energy diagram corresponds to memory characteristic.

3.1 Result for excess O model

Atomistic structures before and after program operation.

Structural change by program operation

After program operation

Initial structure

Step 0 **O:Si •:O**

Program operation

hh hh

Step 0 **O:Si •:O**

Schematic view of structural change by program operation

Is the structure recovered after erase operation?

Erase operation (carrier removal)

Very little structural change.

Structural change by erase operation

After erase operation.

Structural change during program

Structural change during program/erase cycles

Summary of structural change during P/E cycles.

Drastic irreversible structural change During P/E cycles. Irreversible structural change leads to degradation of memory functions during P/E cycles (Vt shift et. al.).

Memory characteristic changes drastically ⁶⁸

Jahn-Teller Effect

After hole injection

Structural change during P/E cycles

Without rearrangement of the covalent bond networks
Jahn-Teller Effect

Spontaneous symmetry breaking structural change stabilize the electron energy by splitting degenerate levels.

Jahn-Teller Effect

Spontaneous symmetry breaking structural change stabilize the electron energy by splitting degenerate levels.

Spontaneous symmetry breaking structural change stabilize the electron energy by splitting degenerate levels.

Defects with Jhan-Teller effect has reversible structural change during P/E cycles

High P/E cycle endurance

N vacancy is ideal charge trap for MONOS memory (Jahn-Teller governs structural change)

80

3.3 N vacancy with O atom

The atomistic structural change during P/E cycles is reversible.

Summary of calculation result

• Excess O leads to memory degradation

- Jahn-Teller type defects suffers no degradation due to its spontaneous symmetry breaking property
 - (It can be a common guiding principle for all types of charge trap memories)

3.4 Recipe for High Quality MONOS Memories

Excess O atoms form defects with irreversible structural change.

Reducing the excess O atoms should be effective for high P/E cycle endurance.

Recipe for High Quality MONOS Memories

Excess O atoms form defects with irreversible structural change.

Reducing the excess O atoms should be effective for high P/E cycle endurance.

Recipe for High Quality MONOS Memories

Absorbing excess O atoms from SiN/SiO₂ interfaces and efficiently reduce the irreversible defects.

High P/E cycle endurance

Recipe for High Quality MONOS Memories

T. Mine et al., Extend. Abst. 2006 IWDTF, p.19 (2006)

Absorbing excess O atoms from SiN/SiO₂ interfaces and efficiently reduce the irreversible defects.

High P/E cycle endurance

Conclusion

- We have clarify the detailed atomistic behavior of defects of MONOS memory by the *ab initio* calculation.
- The excess O atoms cause an irreversible structural change in the SiN layer.
- →The suppression of excess O atoms is effective to improve the MONOS characteristic.

 Defects with Jahn-Teller effect are the most suitable for charge-trap memories. This first principles knowledge becomes key knowledge for developing automobile memories by using MONOS structures!

→ Mass production is realized by Renesass Electronics!!

Now many automobiles such as Prius uses MONOS memories!!

First principles calculations really contributed to industry!!

(Market size is huge, since it contributed to the whole car industry!!)

High-k Gate Dielectrics and so on Mass production of modern LSI is realized by Intel (2008), Panasonic (2010) and IBM (2011) based on the knowledge of nano-interface physics of HfO₂ which we obtained by first principles calculations in 2004.(High-k dielectrics)

Moreover, we have performed design of new types of memories (Resistive random access memory and Phase change memory) as well as a collaborative research with astrophysics

Summary

- We have performed large scale first principles calculations
- We really succeeded the first principles based mass production of modern devices.

High-k Metal gate: Modern LSIs MONOS Memories: Memory devices for automobiles (Toyota, GM, Nissan)

Collaboration

International

Stanford University, Prof. Y. Nishi CNRS(France), Prof. M. Boero POSTECH(Korea), Prof. Hwaung

Budget(FY2008-FY2013)

- KAKENHI: Si nano electronics (2008-2010)
- JST-CREST: Ohmori (2009-2013)
- NEDO: Si nanowire (2008-2012)
- NEDO: Collaboration with LEAP (2012-2014)
- JST-CREST: Oshiyama (2008-2010)