
Feasibility Study 
on Future HPC Infrastructure

-- Study on exascale heterogeneous systems with accelerators --

Mitsuhisa Sato

Professor, Center for Computational Sciences, University of Tsukuba / 
Team Leader of Programming Environment Research Team,  AICS, Riken



Outline

 Back ground: Issues for Exascale computing
 Why Accelerated computing?
 The SDHPC white paper and “Feasibility Study" project

 Our FS project: "Study on exascale heterogeneous systems 
with accelerators"
 PACS-G: a straw man architecture
 Performance estimation and Power estimation
 Programming models for PACS-G
 Current status and plan

 Summary and Concluding Remarks



3

Background: "Post-petascale computing“, toward 
exascale computing

 State of the art: Petascale computing infrastructure
 US: Titan（27PF, 2012）,sequoia （>20PF,2012）
 Japan: The K computer (>10PF, 2011), Tsubame 2.0
 EU: PRACE machines (many of >5 PF, 2012-2013)

 #cores 10^6
 power >10 MW

 What's the next of 
"Petascale"?
 Projection 
(and prediction)
by Top500



4

Issues for exascale computing

 Two important aspects of post-
petascale computing
 Power limitation

 < 20-30 MW
 Strong-scaling 

 < 10^6 nodes, for FT
 > 10TFlops/node
 accelerator, many-cores

 Solution:  Accelerated Computing
 by GPGPU
 by Application-specific Accelerator 
 by ... future acceleration device ...

1 10 102 103 104 105 106

1GFlops
109

1TFlops
1012

1PFlops
1015

1EFlops
1018

#node

Peak
flops

limitation
of #node

Exaflops system

PACS-CS (14TF)

petaflops
by 100-1000nodes

NGS
> 10PF

T2K-tsukuba
(95TF)

the K computer

simple projection of #nodes and peak flops 



The SDHPC white paper and 
Japanese “Feasibility Study" project

 WGs ware orgainzed for drafting the white paper for Strategic 
Direction/Development of HPC in JAPAN by young Japanese researchers with 
advisers (seniors)

 Contents
 Science roadmap until 2020 and List of application for 2020’s
 Four types of hardware architectures identified and performance projection in 2018 

estimated from the present technology trend
 Necessity of further research and development to realize the science roadmap

 For “Feasibility Study" project, 4 research teams were accepted 
 Application study team leaded by RIKEN AICS (Tomita)
 System study team leaded by U Tokyo (Ishikawa)

 Next-generation “General-Purpose” Supercomputer 
 System study team leaded by U Tsukuba (Sato)

 Study on exascale heterogeneous systems with accelerators
 System study team leaded by Tohoku U (Kobayashi)

 Projects were started from July 2012  (1.5 year) …

5



System requirement analysis 
for Target sciences

 System performance
 FLOPS: 800 – 2500PFLOPS
 Memory capacity: 10TB – 500PB
 Memory bandwidth: 0.001 – 1.0 B/F
 Example applications

 Small capacity requirement
 MD, Climate, Space physics, …

 Small BW requirement
 Quantum chemistry, …

 High capacity/BW requirement
 Incompressibility fluid dynamics, …

 Interconnection Network
 Not enough analysis has been carried out
 Some applications need >1us latency and large bisection BW

 Storage
 There is not so big demand  

6

1.0E-4

1.0E-3

1.0E-2

1.0E-1

1.0E+0

1.0E+1

1.0E-3 1.0E-2 1.0E-1 1.0E+0 1.0E+1 1.0E+2 1.0E+3
R

eq
ui

re
m

en
t o

f 
B

/F
Requirement of Memory Capacity (PB)

Low BW
Middle capacity

High BW
small capacity

High BW
middle capacity

High BW
High capacity

(From SDHPC white paper) 



Alternatives of Exascale Architecture

 Four types of architectures are identified for exascale:
 General Purpose (GP)

 Ordinary CPU-based MPPs
 e.g.) K-Computer, GPU, Blue Gene, 

x86-based PC-clusters

 Capacity-Bandwidth oriented (CB)
 With expensive memory-I/F rather than 

computing capability
 e.g.) Vector machines

 Reduced Memory (RM)
 With embedded (main) memory
 e.g.) SoC, MD-GRAPE4, Anton

 Compute Oriented (CO)
 Many processing units
 e.g.) ClearSpeed, GRAPE-DR, GPU?

7

(From SDHPC white paper) 

Memory
bandwidth

Memory
capacity

FLOPS

CB oriented

Compute
oriented

Reduced
Memory

General 
purpose

CB

GP

CO
RM

1.0E-4

1.0E-3

1.0E-2

1.0E-1

1.0E+0

1.0E+1

1.0E-3 1.0E-2 1.0E-1 1.0E+0 1.0E+1 1.0E+2 1.0E+3

R
eq

ui
re

m
en

t o
f 

B/
F

Requirement of Memory Capacity (PB)

Mapping of Architectures



Study on exascale heterogeneous systems 
with accelerators (U Tsukuba proposal)

 Two keys for exascale computing
 Power and strong-scaling

 We study “exascale” heterogeneous systems with accelerators of many-
cores. We are interested in: 
 Architecture of accelerators, core and memory architecture 
 Special-purpose functions
 Direct connection between accelerators in a group
 Power estimation and evaluation
 Programming model 

and computational 
science applications

 Requirement for 
general-purpose 
system

 etc …

8



Project organization
 Joint project with Titech (Makino), Aizu U (Nakazato), RIKEN (Taiji),  U Tokyo, 

KEK, Hiroshima U, and Hitachi as a super computer company
 Target apps: QCD in particle physics, tree N-body, HMD in Astrophysics, MD in 

life sci., FDM of earthquake, FMO in chemistry, NICAM in climate sci.

9

Simulator and Evaluation tools (Kodama) Programming model (Sato)

Study on Implementation and power (Hitachi)

Processor core 
architecture (Nakazato)

Accelerator  Nework
(Boku)

Basic Accelerator architecture (Makino)

Particle 
physics 

(Kururamashi, 
Ishikawa, 

Matsufuru)

Astrophysics 
(Umemura, 
Yoshikawa)

Nano-
material 
Science 

(Oshiyama)

Life Science 
(Taiji, Umeda)

Global Climate 
Science 
(Tanaka, 
Yashiro)

Earth 
Science 

(Okamoto)

API

Programming modelsimulation

Feedback

Application Study (U Tsukuba, RIKEN, U. Tokyo, KEK, Hiroshima U)

Accelerator and 
Network 

System Design
(Titech, 

U Tsukuba, 
Aizu)

Programming 
model

and Simulation 
Tools

(U. Tsukuba)

Study on 
Implementation

(Hitachi)



PACS-G: a straw man architecture
 SIMD architecture, for compute oriented apps (N-body, MD), and stencil apps.
 4096 cores (64x64), 2FMA@1GHz, 4GFlops x 4096 = 16TFlops/chip
 2D mesh (+ broadcast/reduction) on-chip network for stencil apps.
 We expect  10nm technology available in the range of year 2018-2020, 

Chip-dai size: 20mm x 20mm
 Mainly working on on-chip memory (size 512 MB/chip, 128KB/core), 

and, 
 with module (global) memory by
HBM (3D-stack/wide IO DRAM
memory via 2.5D TSV),
bandwidth 1TB/s, 
size 16-32GB/chip
(block access only, no random access)

 No external memory (DIM/DDR)

 250 W/chip expected 
 64K chips for 1 EFLOPS (at peak) 

Master
Proc

H
os
t 
Pr
oc Data

Mem
Inst
Mem

Comm. Buffer

Comm Buffer

Co
m
m
. B

uf
fe
r

Reduction
Network

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE
Co

m
m
. B

U
ffe

r

In
te
r‐
Ch

ip
 

N
et
w
or
k

Bc
as
t

M
em

Bc
as
t

M
em

Bc
as
t

M
em

Bc
as
t

M
em

PACS‐G Chip

HBM (3D-stack) with 2.5D TSV (wide IO)



 A group of 1024～2048 chips are connected via 
accelerator network (inter-chip network)

 25 – 50Gpbs/link for inter-chip: If we extend 2-
D mesh network to the (2D-mesh) external net
work in a group, we need 200～400GB/s (= 32
ch. x 25～50Gbps x 2(bi-direction))⇒too much!

 For 50Gpbs data transfer, we may need direct o
ptical interconnect  from chip.

 I/O Interface to Host: PCI Express Gen 4 x16    
(not enough!!!)

interconnect between chips (2D mesh)

PACS-G: a straw man architecture
Master
Proc

Ho
st
 P
ro
c Data

Mem
Inst
Mem

Comm. Buffer

Comm Buffer

Co
m
m
. B

uf
fe
r

Reduction
Network

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Co
m
m
. B

U
ffe

r

In
te
r‐
Ch

ip
 

N
et
w
or
k

Bc
as
t

M
em

Bc
as
t

M
em

Bc
as
t

M
em

Bc
as
t

M
em

PACS‐G Chip

HBM (3D-stack) with 2.5D TSV (wide IO)



Performance estimation of some applications 

application Expected 
problem size

Efficiency / 
performance

comments

Lattice QCD
(particle physics)

Physical 
volume(12fm)4 

Hydron Manybody
System
1284 lattice

12%～53% 7.9
～34.7PF  
2048proc(single 
precision peak 
65.5 PF)

• 評価対象アルゴリズム：領域分割前処理単精度クォークソルバー
（ウィルソンクォーク型、BiCGStab法）

• Use only on-chip memory
• Communication latency is significant. eps. for global reduction
• On K computer: efficiency 26%,  32768 nodes, 1.1 PF

Hydro-Magnetic 
Dynamics code 
(astrophysics)

Number of cells
19843

1.89 PF, 22.5%
512 proc(8PF)

• HLL近似リーマン解法、磁場をflux-CT法よる有限体積法。時間積
分を2次精度のTVD Runge-Kutta法

• Use global(module) memory
• 210-220ms/step, 4.5s/step in case of Intel Core i7 4096 core

Gravity N-body 
(astrophysics)

814G interaction/sec/chip 
（single preceision, no-collision）

• Offload only gravity calculation, assuming trajectory 
computation is performed by host.

• Use only on-chip meomry
• 66.7 times faster that Intel Xeon E5-2670

Molecular 
Dynamics（MD）
Kernel (Life 
science)

1cell/core、1 cell 
(5Å)3，cut-off  
radius 12Å
2580 atoms/core

3.67PF、
Max 15Matoms 
/256 proc，
784.4us/step

• Note only short-distance force is considered. 遠距離相互作用計
算、結合力計算は未評価

• セルインデックス法（空間座標分割）とハーフシェルスキームを仮定
• On K computer, 500M atoms using whole system、4.6PF, 

114ms/step

Seismic wave 
computation(eart
h science)

Lattice size 
2048x2048x512

3.5 PF
/1024 procs

• 3-D Finite-Difference Time-Domain methodtime（FDTD）、空間
差分4次精度、時間差分2次精度、弾性体、速度と応力を変数とす
るスキーム

• Use Only on-chip. global memory will be used
格子間隔 50 m 最小横波速度 300 m/s を想定した場合

 We did performance estimation (upper bound) of some applications with counts of 
calculation(FLOPS) and memory access (bandwidth), pattern of communications on a group of 
PACS-G proc (upto 2048 procs, 32PF) 

 When all data fits on on-chip memory, ratio B/F is 4 B/F, total mem size 1TB/group
 When data fits into module memory,  ratio B/F is 0.05B/F, total mem size 32TB/group



Power-consumption estimation and Revision from strawman
 Inter-chip network: 

 22.4 GB/s (8 lanes/ports) x 6 ports 
may be reasonable (enough?) for 
a wide range of applications.

 Clock frequency of processor:
 To optimize performance and power, 
800MHz-700MHz will be adequate rather 
than > 1GHz. We need more
investigation for trade-off of number
of cores (PE) and clock freq.

 Power consumption and memory bandwidth of module memory:
 If we can use HBM with 2.5D TSV,  1TB/s , 70GF/W, (otherwise HMC)
 750MHz, 1FMA/.core, 10240cores(1.53PF) , 2.5D HBM 32GB ⇒183W
 750MHz, 1FMA/.core, 10240cores(1.53PF) , HMC 64GB ⇒ 213W

 We need more study for space (chip dai-size) ...(with 10nm FinFET
technology)

Elements Power (W)

Processor Chip (#PE = 5120) 96.3

Power per PE 0.0188

Module Memory

2.5D TSV, HBM 8GB x 4=32GB 36.0

HMC 16GB x 4  60.0

Inter‐chip network 14.4

misc (DC/DC, AC/DC overhead, etc) + 25%

Total power consumption per proc.

2.5TSV, HBM 183.3(83GF/W)

HMC 213.3(73GF/W)
This estimation should be

revised for 10nm technologies



Programming models for PACS-G

 PACS-G C extension for low-level 
programing

 XcalableMP (subset/extension) + 
OpenACC for directive based 
programming for stencil apps.
 to make it easy to port existing 

codes

 Domain-Specific Language (DSL) 
and application framework
 e.g. DSL for particle-based apps.

 (OpenCL?)
PACS-G architecture

PACS-G C 
extension

XcalableMP
+

OpenACC

DSL
&

app. 
Framework



PACS-G C extension

 C extended for low-level programming of PACS-G SIMD 
architecture

 extended storage class to specify memory
 global_memory: allocate data in global (module) memory

 __do_all__ statement
 specify code fragments to be executed in PE

 function qualifiers:
 __global__ : to allocate frame in PE
 __all__ : functions executed in PE

 Intrinsic functions: compiled into instructions.
 template: index space over PEs

 __for_all__ : parallel loop on template

 Host interface library 



Template
 template: (virtual) index space over PEs

 idea introduced in HPF and other data parallel lang (also in XMP)
 __for_all__: parallel loop over PEs

__for_all_ (template; lb1:ub1; lb2:ub2; ...) statement
 register variables (ix, iy, ... gx, gy,...) gives local/global indices

 also used to describe data transfer between PE and global memory
1024

512

(p_x, p_y)

l_a

l_ldim

g_a

g_ldim

dx

dy

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

void pg_memCopyG2P_W_2D(int g_a, int g_ldim,
int dx , int dy, __template__ t_id, int p_x, int p_y,

int l_a, int l_ldim);

iy

ixgx

gy



Code example (host code)
#include <stdio.h>
#include <PG_interface.h>
#define N 500
#define M 300

double A[M][N], B[M][N], C[M][N];

main()
{

int i, r;  int x,y;
void *g_a,*g_b,*g_c;

PG_initialize("test13.exe");  // test4.c

// allocate memory in GM                                                    
PG_memAlloc(&g_a,sizeof(double)*N*M,PG_GMem);
PG_memAlloc(&g_b,sizeof(double)*N*M,PG_GMem);
PG_memAlloc(&g_c,sizeof(double)*N*M,PG_GMem);

// copy out, input                                                          
PG_memCopy(g_a,(char *)A,sizeof(double)*N*M,PG_memCopyHostToGMem);
PG_memCopy(g_b,(char *)B,sizeof(double)*N*M,PG_memCopyHostToGMem);

// call vectAdd on PACS-G                                                   
r = PG_call("matAddGM",N,M,g_a,g_b,g_c);
if(!r){   printf("call is failed¥n");  exit(1); }

PG_memCopy((char *)C,g_c,sizeof(double)*N*M,
PG_memCopyGMemToHost);

// free memory                                                       
PG_memFree(g_a,PG_GMem);
PG_memFree(g_b,PG_GMem);
PG_memFree(g_c,PG_GMem);

}

note:
PACS-G proc can 
execute a main 
program without 
hosts

invoke a function
on PACS-G proc



Code example (PACS-G)
#include <stdio.h>
#include <PACS_G.h>

void matAddGM(int n, int m, int *a, int *b, int *c)
{

__template_t__ tmpl;
int *l_a,*l_b,*l_c;
int x_blk_siz, y_blk_siz, blk_siz;

tmpl = pg_template2D(0,n-1,0,m-1);
x_blk_siz = pg_templateBlockSize(tmpl,0);
y_blk_siz = pg_templateBlockSize(tmpl,1);
blk_siz = x_blk_siz*y_blk_siz;
l_a = (int *)pg_pe_malloc(blk_siz*sizeof(double));
l_b = (int *)pg_pe_malloc(blk_siz*sizeof(double));
l_c = (int *)pg_pe_malloc(blk_siz*sizeof(double));

pg_memCopyG2P_W_2D(a,n,n,m,tmpl,0,0,l_a,x_blk_siz);
pg_memCopyG2P_W_2D(b,n,n,m,tmpl,0,0,l_b,x_blk_siz);

matAdd(tmpl,n,m,x_blk_siz,l_a,l_b,l_c);

pg_memCopyP2G_W_2D(c,n,n,m,tmpl,0,0,l_c,x_blk_siz);

pg_pe_free(l_a);
pg_pe_free(l_b);
pg_pe_free(l_c);

}

/*                                                                    
* element-wise matrix add                                
*/

__global__ void matAdd(__template_t__ tmpl,
int n, int m, int w,

double *l_a, double *l_b, double *l_c)
{

int i,x,y;

__for_all__(tmpl;0:n-1;0:m-1){
x = __xi__; // local index                          
y = __yi__;
i = y*w+x;
l_c[i] = l_a[i]+l_b[i];

}
}

copy from GM to 
PE using template

iterate on 
template
(parallel

loop)



Programming model:  XcalableMP + OpenACC

 Use OpenACC to specify offloaded fragment of 
code and data movement

 To align data and computation to core, we 
use the concept "template" of XcalableMP 
(virtual index space). We can generate code 
for each core.

 It will be useful to port existing stencil code to 
PACS-G architecture

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

template t

array
u

array
uu

loop idx
space

align loop

#pragma xmp template t(0:XSIZE+2, 0:YSIZE+2)

double u[XSIZE+2][YSIZE+2],uu[XSIZE+2][YSIZE+2];
#pragma xmp align u[i][j] with t(i,j)
#pragma xmp align uu[i][j] with t(i,j)
#pragma xmp shadow uu[1:1][1:1]

#pramga xmp reflect uu
#pragma xmp loop on t(x,y)

for(x = 1; x <= XSIZE; x++)
for(y = 1; y <= YSIZE; y++)

u[x][y] = (uu[x-1][y] + uu[x+1][y] 
+ uu[x][y-1] + uu[x][y+1])/4.0;

sum = 0.0;
#pragma xmp loop on t(x,y) reduction(+:sum)

for(x = 1; x <= XSIZE; x++)
for(y = 1; y <= YSIZE; y++)

sum += (uu[x][y]-u[x][y]);



20

 A PGAS language. Directive-based language extensions 
for Fortran95 and C99 for the XMP PGAS model
 To reduce the cost of code-rewriting and education

 Global view programming with global-view distributed 
data structures for data parallelism
 A set of threads are started as a logical task. Work mapping 

constructs are used to map works and iteration with affinity 
to data explicitly.

 Rich communication and sync directives such as “gmove” 
and “shadow”.

 Many concepts are inherited from HPF

 Co-array feature of CAF is adopted as a part of the 
language spec for local view programming (also 
defined in C).

directives
Comm, sync and work-sharing

Duplicated execution

node0 node1 node2

XcalableMP : directive-based language eXtension
for Scalable and performance-aware Parallel Programming

http://www.xcalablemp.org

int array[N];
#pragma xmp nodes p(4)
#pragma xmp template t(N)
#pragma xmp distribute t(block) on p
#pragma xmp align array[i][ with t(i)

#pragma xmp loop on t(i)  reduction(+:res)
for(i = 0; i < 10; i++)

array[i] = func(i,);
res += …;

} }



Global view programming for data-parallel
stencil apps. in XMP

21XMP project

 The following directives specify a data distribution among nodes
 #pragma xmp nodes p(*)
 #pragma xmp template T(0:15)
 #pragma xmp distribute T(block) on p
 #pragma xmp align array[i] with T(i)

node1

node2

node3

node0

array[]

array[]

node1

node2

node3

node0

 Execute for loop to compute on array 

Data region to be computed 
by for loop

distributed array

#pragma xmp loop on t(i)
for(i=2; i <=10; i++)

 Exchange data only on “shadow” (sleeve) region
 If neighbor data is required to communicate, then only sleeve 

area can be considered.
 example：b[i] = array[i-1] + array[i+1]

node1

node2

node3

node0

array[]

Programmer specifies sleeve region explicitly
Directive：#pragma xmp reflect array

#pragma xmp shadow array[1:1]

#pragma xmp align array[i] with t(i)

data distribution and allocation

parallel loop aligned to data

neighbor communication



Current status

 Performance estimation by co-design process
 2012 (done): QCD, N-body, MD, HMD
 2013: earth quake sim, NICAM (climate), FMO (chemistry) ⇒ RSDFT, Conquest

 Development of simulators (clock-level/instruction level) for more precious 
and quantitative performance evaluation

 Programming models and compiler development 
 PACS-G C extension
 XMP for PACS-G (and OpenACC)

 (Re-)Design and investigation of network topology
 For both on-chip network and inter-chip network 

 2D mesh is sufficient? or, other alternative?

 Precise and more detail estimation of power consumptions
 Application development for PACS-G for quantitative performance 

evaluation, using our programming models. ...
 .... Further study on the architecture for beyond stencil and particle apps.



Summary and Concluding Remarks

 Issues for exascale computing
 Power and Strong-scaling
 Solution:  Accelerated Computing

 PACS-G: the "extreme SIMD" architecture
 Co-design for compute oriented apps (N-body, MD), and stencil apps.

 Aiming to high performance(> 10TF/chip) , but also to good 
performance/power.

 On-chip memory for each PE using 10nm silicon technology at 2018-2020.
 dedicated inter-chip network and HBM with 2.5 TSV
 Programming models and applications are under development for 

performance evaluation.

 I believe acceleration with the "extreme SIMDs" and on-chip memory is 
a first (and good) candidate for exascale computing in some scientific 
fields.



 Our FS project will be over at the end of 2013FY.

 We are proposing our architecture for Japanese 
"exascale" supercomputer, which development will be 
conducted by Riken AICS from 2014FY.
 The national "exascale" supercomputer project is aiming a 

"exascale" system in 2019-2020.


