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Background: "Post-petascale computing“, toward 
exascale computing

 State of the art: Petascale computing infrastructure
 US: Titan（27PF, 2012）,sequoia （>20PF,2012）
 Japan: The K computer (>10PF, 2011), Tsubame 2.0
 EU: PRACE machines (many of >5 PF, 2012-2013)

 #cores 10^6
 power >10 MW

 What's the next of 
"Petascale"?
 Projection 
(and prediction)
by Top500
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Issues for exascale computing

 Two important aspects of post-
petascale computing
 Power limitation

 < 20-30 MW
 Strong-scaling 

 < 10^6 nodes, for FT
 > 10TFlops/node
 accelerator, many-cores

 Solution:  Accelerated Computing
 by GPGPU
 by Application-specific Accelerator 
 by ... future acceleration device ...

1 10 102 103 104 105 106

1GFlops
109

1TFlops
1012

1PFlops
1015

1EFlops
1018

#node

Peak
flops

limitation
of #node

Exaflops system

PACS-CS (14TF)

petaflops
by 100-1000nodes

NGS
> 10PF

T2K-tsukuba
(95TF)

the K computer

simple projection of #nodes and peak flops 



The SDHPC white paper and 
Japanese “Feasibility Study" project

 WGs ware orgainzed for drafting the white paper for Strategic 
Direction/Development of HPC in JAPAN by young Japanese researchers with 
advisers (seniors)

 Contents
 Science roadmap until 2020 and List of application for 2020’s
 Four types of hardware architectures identified and performance projection in 2018 

estimated from the present technology trend
 Necessity of further research and development to realize the science roadmap

 For “Feasibility Study" project, 4 research teams were accepted 
 Application study team leaded by RIKEN AICS (Tomita)
 System study team leaded by U Tokyo (Ishikawa)

 Next-generation “General-Purpose” Supercomputer 
 System study team leaded by U Tsukuba (Sato)

 Study on exascale heterogeneous systems with accelerators
 System study team leaded by Tohoku U (Kobayashi)

 Projects were started from July 2012  (1.5 year) …
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System requirement analysis 
for Target sciences

 System performance
 FLOPS: 800 – 2500PFLOPS
 Memory capacity: 10TB – 500PB
 Memory bandwidth: 0.001 – 1.0 B/F
 Example applications

 Small capacity requirement
 MD, Climate, Space physics, …

 Small BW requirement
 Quantum chemistry, …

 High capacity/BW requirement
 Incompressibility fluid dynamics, …

 Interconnection Network
 Not enough analysis has been carried out
 Some applications need >1us latency and large bisection BW

 Storage
 There is not so big demand  
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Alternatives of Exascale Architecture

 Four types of architectures are identified for exascale:
 General Purpose (GP)

 Ordinary CPU-based MPPs
 e.g.) K-Computer, GPU, Blue Gene, 

x86-based PC-clusters

 Capacity-Bandwidth oriented (CB)
 With expensive memory-I/F rather than 

computing capability
 e.g.) Vector machines

 Reduced Memory (RM)
 With embedded (main) memory
 e.g.) SoC, MD-GRAPE4, Anton

 Compute Oriented (CO)
 Many processing units
 e.g.) ClearSpeed, GRAPE-DR, GPU?
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Study on exascale heterogeneous systems 
with accelerators (U Tsukuba proposal)

 Two keys for exascale computing
 Power and strong-scaling

 We study “exascale” heterogeneous systems with accelerators of many-
cores. We are interested in: 
 Architecture of accelerators, core and memory architecture 
 Special-purpose functions
 Direct connection between accelerators in a group
 Power estimation and evaluation
 Programming model 

and computational 
science applications

 Requirement for 
general-purpose 
system

 etc …
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Project organization
 Joint project with Titech (Makino), Aizu U (Nakazato), RIKEN (Taiji),  U Tokyo, 

KEK, Hiroshima U, and Hitachi as a super computer company
 Target apps: QCD in particle physics, tree N-body, HMD in Astrophysics, MD in 

life sci., FDM of earthquake, FMO in chemistry, NICAM in climate sci.
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PACS-G: a straw man architecture
 SIMD architecture, for compute oriented apps (N-body, MD), and stencil apps.
 4096 cores (64x64), 2FMA@1GHz, 4GFlops x 4096 = 16TFlops/chip
 2D mesh (+ broadcast/reduction) on-chip network for stencil apps.
 We expect  10nm technology available in the range of year 2018-2020, 

Chip-dai size: 20mm x 20mm
 Mainly working on on-chip memory (size 512 MB/chip, 128KB/core), 

and, 
 with module (global) memory by
HBM (3D-stack/wide IO DRAM
memory via 2.5D TSV),
bandwidth 1TB/s, 
size 16-32GB/chip
(block access only, no random access)

 No external memory (DIM/DDR)

 250 W/chip expected 
 64K chips for 1 EFLOPS (at peak) 
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 A group of 1024～2048 chips are connected via 
accelerator network (inter-chip network)

 25 – 50Gpbs/link for inter-chip: If we extend 2-
D mesh network to the (2D-mesh) external net
work in a group, we need 200～400GB/s (= 32
ch. x 25～50Gbps x 2(bi-direction))⇒too much!

 For 50Gpbs data transfer, we may need direct o
ptical interconnect  from chip.

 I/O Interface to Host: PCI Express Gen 4 x16    
(not enough!!!)

interconnect between chips (2D mesh)

PACS-G: a straw man architecture
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Performance estimation of some applications 

application Expected 
problem size

Efficiency / 
performance

comments

Lattice QCD
(particle physics)

Physical 
volume(12fm)4 

Hydron Manybody
System
1284 lattice

12%～53% 7.9
～34.7PF  
2048proc(single 
precision peak 
65.5 PF)

• 評価対象アルゴリズム：領域分割前処理単精度クォークソルバー
（ウィルソンクォーク型、BiCGStab法）

• Use only on-chip memory
• Communication latency is significant. eps. for global reduction
• On K computer: efficiency 26%,  32768 nodes, 1.1 PF

Hydro-Magnetic 
Dynamics code 
(astrophysics)

Number of cells
19843

1.89 PF, 22.5%
512 proc(8PF)

• HLL近似リーマン解法、磁場をflux-CT法よる有限体積法。時間積
分を2次精度のTVD Runge-Kutta法

• Use global(module) memory
• 210-220ms/step, 4.5s/step in case of Intel Core i7 4096 core

Gravity N-body 
(astrophysics)

814G interaction/sec/chip 
（single preceision, no-collision）

• Offload only gravity calculation, assuming trajectory 
computation is performed by host.

• Use only on-chip meomry
• 66.7 times faster that Intel Xeon E5-2670

Molecular 
Dynamics（MD）
Kernel (Life 
science)

1cell/core、1 cell 
(5Å)3，cut-off  
radius 12Å
2580 atoms/core

3.67PF、
Max 15Matoms 
/256 proc，
784.4us/step

• Note only short-distance force is considered. 遠距離相互作用計
算、結合力計算は未評価

• セルインデックス法（空間座標分割）とハーフシェルスキームを仮定
• On K computer, 500M atoms using whole system、4.6PF, 

114ms/step

Seismic wave 
computation(eart
h science)

Lattice size 
2048x2048x512

3.5 PF
/1024 procs

• 3-D Finite-Difference Time-Domain methodtime（FDTD）、空間
差分4次精度、時間差分2次精度、弾性体、速度と応力を変数とす
るスキーム

• Use Only on-chip. global memory will be used
格子間隔 50 m 最小横波速度 300 m/s を想定した場合

 We did performance estimation (upper bound) of some applications with counts of 
calculation(FLOPS) and memory access (bandwidth), pattern of communications on a group of 
PACS-G proc (upto 2048 procs, 32PF) 

 When all data fits on on-chip memory, ratio B/F is 4 B/F, total mem size 1TB/group
 When data fits into module memory,  ratio B/F is 0.05B/F, total mem size 32TB/group



Power-consumption estimation and Revision from strawman
 Inter-chip network: 

 22.4 GB/s (8 lanes/ports) x 6 ports 
may be reasonable (enough?) for 
a wide range of applications.

 Clock frequency of processor:
 To optimize performance and power, 
800MHz-700MHz will be adequate rather 
than > 1GHz. We need more
investigation for trade-off of number
of cores (PE) and clock freq.

 Power consumption and memory bandwidth of module memory:
 If we can use HBM with 2.5D TSV,  1TB/s , 70GF/W, (otherwise HMC)
 750MHz, 1FMA/.core, 10240cores(1.53PF) , 2.5D HBM 32GB ⇒183W
 750MHz, 1FMA/.core, 10240cores(1.53PF) , HMC 64GB ⇒ 213W

 We need more study for space (chip dai-size) ...(with 10nm FinFET
technology)

Elements Power (W)

Processor Chip (#PE = 5120) 96.3

Power per PE 0.0188

Module Memory

2.5D TSV, HBM 8GB x 4=32GB 36.0

HMC 16GB x 4  60.0

Inter‐chip network 14.4

misc (DC/DC, AC/DC overhead, etc) + 25%

Total power consumption per proc.

2.5TSV, HBM 183.3(83GF/W)

HMC 213.3(73GF/W)
This estimation should be

revised for 10nm technologies



Programming models for PACS-G

 PACS-G C extension for low-level 
programing

 XcalableMP (subset/extension) + 
OpenACC for directive based 
programming for stencil apps.
 to make it easy to port existing 

codes

 Domain-Specific Language (DSL) 
and application framework
 e.g. DSL for particle-based apps.

 (OpenCL?)
PACS-G architecture

PACS-G C 
extension

XcalableMP
+

OpenACC

DSL
&

app. 
Framework



PACS-G C extension

 C extended for low-level programming of PACS-G SIMD 
architecture

 extended storage class to specify memory
 global_memory: allocate data in global (module) memory

 __do_all__ statement
 specify code fragments to be executed in PE

 function qualifiers:
 __global__ : to allocate frame in PE
 __all__ : functions executed in PE

 Intrinsic functions: compiled into instructions.
 template: index space over PEs

 __for_all__ : parallel loop on template

 Host interface library 



Template
 template: (virtual) index space over PEs

 idea introduced in HPF and other data parallel lang (also in XMP)
 __for_all__: parallel loop over PEs

__for_all_ (template; lb1:ub1; lb2:ub2; ...) statement
 register variables (ix, iy, ... gx, gy,...) gives local/global indices

 also used to describe data transfer between PE and global memory
1024

512

(p_x, p_y)

l_a

l_ldim

g_a

g_ldim

dx

dy

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

void pg_memCopyG2P_W_2D(int g_a, int g_ldim,
int dx , int dy, __template__ t_id, int p_x, int p_y,

int l_a, int l_ldim);

iy

ixgx

gy



Code example (host code)
#include <stdio.h>
#include <PG_interface.h>
#define N 500
#define M 300

double A[M][N], B[M][N], C[M][N];

main()
{

int i, r;  int x,y;
void *g_a,*g_b,*g_c;

PG_initialize("test13.exe");  // test4.c

// allocate memory in GM                                                    
PG_memAlloc(&g_a,sizeof(double)*N*M,PG_GMem);
PG_memAlloc(&g_b,sizeof(double)*N*M,PG_GMem);
PG_memAlloc(&g_c,sizeof(double)*N*M,PG_GMem);

// copy out, input                                                          
PG_memCopy(g_a,(char *)A,sizeof(double)*N*M,PG_memCopyHostToGMem);
PG_memCopy(g_b,(char *)B,sizeof(double)*N*M,PG_memCopyHostToGMem);

// call vectAdd on PACS-G                                                   
r = PG_call("matAddGM",N,M,g_a,g_b,g_c);
if(!r){   printf("call is failed¥n");  exit(1); }

PG_memCopy((char *)C,g_c,sizeof(double)*N*M,
PG_memCopyGMemToHost);

// free memory                                                       
PG_memFree(g_a,PG_GMem);
PG_memFree(g_b,PG_GMem);
PG_memFree(g_c,PG_GMem);

}

note:
PACS-G proc can 
execute a main 
program without 
hosts

invoke a function
on PACS-G proc



Code example (PACS-G)
#include <stdio.h>
#include <PACS_G.h>

void matAddGM(int n, int m, int *a, int *b, int *c)
{

__template_t__ tmpl;
int *l_a,*l_b,*l_c;
int x_blk_siz, y_blk_siz, blk_siz;

tmpl = pg_template2D(0,n-1,0,m-1);
x_blk_siz = pg_templateBlockSize(tmpl,0);
y_blk_siz = pg_templateBlockSize(tmpl,1);
blk_siz = x_blk_siz*y_blk_siz;
l_a = (int *)pg_pe_malloc(blk_siz*sizeof(double));
l_b = (int *)pg_pe_malloc(blk_siz*sizeof(double));
l_c = (int *)pg_pe_malloc(blk_siz*sizeof(double));

pg_memCopyG2P_W_2D(a,n,n,m,tmpl,0,0,l_a,x_blk_siz);
pg_memCopyG2P_W_2D(b,n,n,m,tmpl,0,0,l_b,x_blk_siz);

matAdd(tmpl,n,m,x_blk_siz,l_a,l_b,l_c);

pg_memCopyP2G_W_2D(c,n,n,m,tmpl,0,0,l_c,x_blk_siz);

pg_pe_free(l_a);
pg_pe_free(l_b);
pg_pe_free(l_c);

}

/*                                                                    
* element-wise matrix add                                
*/

__global__ void matAdd(__template_t__ tmpl,
int n, int m, int w,

double *l_a, double *l_b, double *l_c)
{

int i,x,y;

__for_all__(tmpl;0:n-1;0:m-1){
x = __xi__; // local index                          
y = __yi__;
i = y*w+x;
l_c[i] = l_a[i]+l_b[i];

}
}

copy from GM to 
PE using template

iterate on 
template
(parallel

loop)



Programming model:  XcalableMP + OpenACC

 Use OpenACC to specify offloaded fragment of 
code and data movement

 To align data and computation to core, we 
use the concept "template" of XcalableMP 
(virtual index space). We can generate code 
for each core.

 It will be useful to port existing stencil code to 
PACS-G architecture

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

template t

array
u

array
uu

loop idx
space

align loop

#pragma xmp template t(0:XSIZE+2, 0:YSIZE+2)

double u[XSIZE+2][YSIZE+2],uu[XSIZE+2][YSIZE+2];
#pragma xmp align u[i][j] with t(i,j)
#pragma xmp align uu[i][j] with t(i,j)
#pragma xmp shadow uu[1:1][1:1]

#pramga xmp reflect uu
#pragma xmp loop on t(x,y)

for(x = 1; x <= XSIZE; x++)
for(y = 1; y <= YSIZE; y++)

u[x][y] = (uu[x-1][y] + uu[x+1][y] 
+ uu[x][y-1] + uu[x][y+1])/4.0;

sum = 0.0;
#pragma xmp loop on t(x,y) reduction(+:sum)

for(x = 1; x <= XSIZE; x++)
for(y = 1; y <= YSIZE; y++)

sum += (uu[x][y]-u[x][y]);
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 A PGAS language. Directive-based language extensions 
for Fortran95 and C99 for the XMP PGAS model
 To reduce the cost of code-rewriting and education

 Global view programming with global-view distributed 
data structures for data parallelism
 A set of threads are started as a logical task. Work mapping 

constructs are used to map works and iteration with affinity 
to data explicitly.

 Rich communication and sync directives such as “gmove” 
and “shadow”.

 Many concepts are inherited from HPF

 Co-array feature of CAF is adopted as a part of the 
language spec for local view programming (also 
defined in C).

directives
Comm, sync and work-sharing

Duplicated execution

node0 node1 node2

XcalableMP : directive-based language eXtension
for Scalable and performance-aware Parallel Programming

http://www.xcalablemp.org

int array[N];
#pragma xmp nodes p(4)
#pragma xmp template t(N)
#pragma xmp distribute t(block) on p
#pragma xmp align array[i][ with t(i)

#pragma xmp loop on t(i)  reduction(+:res)
for(i = 0; i < 10; i++)

array[i] = func(i,);
res += …;

} }



Global view programming for data-parallel
stencil apps. in XMP

21XMP project

 The following directives specify a data distribution among nodes
 #pragma xmp nodes p(*)
 #pragma xmp template T(0:15)
 #pragma xmp distribute T(block) on p
 #pragma xmp align array[i] with T(i)

node1

node2

node3

node0

array[]

array[]

node1

node2

node3

node0

 Execute for loop to compute on array 

Data region to be computed 
by for loop

distributed array

#pragma xmp loop on t(i)
for(i=2; i <=10; i++)

 Exchange data only on “shadow” (sleeve) region
 If neighbor data is required to communicate, then only sleeve 

area can be considered.
 example：b[i] = array[i-1] + array[i+1]

node1

node2

node3

node0

array[]

Programmer specifies sleeve region explicitly
Directive：#pragma xmp reflect array

#pragma xmp shadow array[1:1]

#pragma xmp align array[i] with t(i)

data distribution and allocation

parallel loop aligned to data

neighbor communication



Current status

 Performance estimation by co-design process
 2012 (done): QCD, N-body, MD, HMD
 2013: earth quake sim, NICAM (climate), FMO (chemistry) ⇒ RSDFT, Conquest

 Development of simulators (clock-level/instruction level) for more precious 
and quantitative performance evaluation

 Programming models and compiler development 
 PACS-G C extension
 XMP for PACS-G (and OpenACC)

 (Re-)Design and investigation of network topology
 For both on-chip network and inter-chip network 

 2D mesh is sufficient? or, other alternative?

 Precise and more detail estimation of power consumptions
 Application development for PACS-G for quantitative performance 

evaluation, using our programming models. ...
 .... Further study on the architecture for beyond stencil and particle apps.



Summary and Concluding Remarks

 Issues for exascale computing
 Power and Strong-scaling
 Solution:  Accelerated Computing

 PACS-G: the "extreme SIMD" architecture
 Co-design for compute oriented apps (N-body, MD), and stencil apps.

 Aiming to high performance(> 10TF/chip) , but also to good 
performance/power.

 On-chip memory for each PE using 10nm silicon technology at 2018-2020.
 dedicated inter-chip network and HBM with 2.5 TSV
 Programming models and applications are under development for 

performance evaluation.

 I believe acceleration with the "extreme SIMDs" and on-chip memory is 
a first (and good) candidate for exascale computing in some scientific 
fields.



 Our FS project will be over at the end of 2013FY.

 We are proposing our architecture for Japanese 
"exascale" supercomputer, which development will be 
conducted by Riken AICS from 2014FY.
 The national "exascale" supercomputer project is aiming a 

"exascale" system in 2019-2020.


