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Achievements (FY2008-FY2013)

@ Non-equilibrium ionization and two-temperature structure in merging galaxy clusters
Akahori, T., Yoshikawa, K. 2008, PAS], 60, 19
Akahori, T., Yoshikawa, K. 2010, PAS], 62, 335
Akahori, T., Yoshikawa, K. 2012, PAS], 64, 12

@ Vlasov-Poisson simulations for collisionless self-gravitating systems in 6D phase space

Yoshikawa K., Yoshida, N., Umemura, M. 2013, Ap], 762, 116

@ Acceleration of N-body simulations with the SIMD instruction: Phantom GRAPE
Tanikawa, W., Yoshikawa, K., Okamoto, T., Nitadori, K. 2012, New A., 17, 82

Tanikawa, W., Yoshikawa, K., Nitadori, K., Okamoto, T. 2013, New A., 19, 74

@ Novel algorithms for radiation transfer simulations: ARGOT & ART schemes

Okamoto, T. Yoshikawa, K. Umemura, M. 2011, MNRAS, 419, 2855



Vlasov-Poisson Simulation
in the 6D Phase Space

P Numerical Methodology
P Test Suites

P Advantage and Disadvantage / Vlasov vs N-body



Viasov-Poisson Simulations

Vlasov-Poisson equations
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P Alternative to N-body methods that simulates collisionless self-gravitating
systems by integrating Vlasov-Poisson equations.

Fujiwara (1981, 1983), Nishida et al. (1981, 1984), Hozumi (1997), Hozumi et al. (2000)

P Simulations in the 6D phase space require very large amount of memory and
huge computational costs.

P First Vlasov-Poisson simulations in the 6D phase space

Yoshikawa, Yoshida, Umemura 2013, ApJ, 762, 116



Numerical Methods
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Schemes

P Each of 3D physical and velocity space is discretized with
uniform regular mesh.

P Vlasov equation is solved with the directional splitting scheme

P Poisson equation is solved with convolution method using FFT

Parallelization

P 6D phase space is decomposed along the 3D physical space.



Advection Equation

P Vlasov equation is decomposed into 6 one-dimensional advection equations.

of  of
E—F’U%—O

P Physical requirements

f e .
@ positivity
{ @ mass conservation

| @ maximum principle

——> Positive Flux Conservative (PFC) method
Filbet, Sonnendrucker, Bertrand, J. Comp. Phys (2001) 172, 166-187

@ satisfies all the physical requirements.

a effectively 3™ order scheme in space.



Time Integration

» 2" order leapfrog scheme
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@ Poisson equation is solved after updating the advection equation in
physical space

P Timestep constrains
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King Sphere

P initial condition
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» number of mesh grids :

physical space 64°
velocity space 64°

P stable solution of Vlasov-Poisson equation

density profile
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King Sphere
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P time variation of kinetic and
potential energies are sufficiently
small.

P relative error of total energy is
within 1%.

P total mass is also well conserved
with sufficiently good accuracy.



King Sphere
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P time “evolution” of the density profile of King sphere

P profiles are almost unchanged

P slight mass transfer from the center to the outskirts
probably due to the numerical diffusion.



3-D Self-Gravitating System

P initial condition

f(Z,0) = 1+9) eXp( @)

(2mo2)3/2 202

p=1+0
white-noise power spectrum for the density perturbation o
» number of mesh grids

physical space : 64°
velocity space : 64°

P boundary condition periodic boundary condition

r

AnGp k <k, ==)> gravitational instability

2

Jeans wave number : k2 = 4

o

kK >k, == collisionless damping

\



3-D Self-Gravitating System

X Jeans wave number
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P clear switching of gravitational instability and collisionless damping
at the Jeans wave number.
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3-D Self-Gravitating System
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consistent with linear theory

P For a large k/k , damping rate

gets smaller due to the non-linear
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N-body vs Viasov

P N-body simulation

@ particles sample the mass distribution in the 6D phase space volume
in @ Monte-Carlo manner, and are advanced along the characteristic
lines of the Vlasov equation.

@ numerical results include intrinsic shot noise.
@ spatial resolution is adaptive and better in higher density regions
@ poor at solving collisionless damping (aka free streaming)

P Viasov-Poisson simulation

@ treats matter as continuum fluid in the phase
space

=—> free from shot noise contamination

@ good at simulating collisionless damping

@ inevitably poor spatial resolution compared with N-body simulations

>V



Application to Dynamics of
Neutrinos Iin the Large-Scale
Structure Formation



Neutrinos in Large-Scale Structure

I Observation of neutrino oscillation turns out that neutrinos are massive.

=—> dynamical effect on the large-scale structure formation

P Ground-based experiments can only probe the mass difference
between different flavors but not the absolute mass of neutrinos.

3
0.05eV < Zm,,; <1l.4deV
v i=1 N

neutrino oscillation WMAP 9yr

@ The absolute mass and the mass hierarchy are important for
theories beyond the standard model of elementary particles .

@ The imprints of massive neutrinos on LSS in the universe is
very important.



Collisionless Dampmg of Neutrmos
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P very large velocity dispersion of neutrinos ﬁ (Shoji & Komatsu 2010)
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LSS observations can probe the absolute mass of neutrinos.



Simulations of LSS formation with
CDM+neutrinos

P Previous simulations based-on N-body methods

neutrino dynamics are not solved in a consistent manner.

A hybrid of N-body and Vlasov-Poisson simulations

» CDM (Cold Dark Matter)
very small thermal velocity dispersion = N-body simulations
P neutrino (Hot Dark Matter)

collisionless damping due to large velocity dispersion

=  Vlasov-Poisson simulation



Vlasov Equation in
the Cosmological Comoving Frame

P Vlasov equation in canonical coordinates
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@ matter distribution in momentum space quickly overflows
the predefined range of momentum.

—

» modified Vlasov equation in terms of peculiar velocity U = aX
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@ the extent of peculiar velocity distribution does not change a lot.



Cosmological Vlasov Simulation

ACDM universe with WMAP-9 yr cosmological parameters L=120 Mpc/h
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Cosmological Vlasov Simulations
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P consistent P(k) between N-body and Vlasov simulations

P Difference in P(k) on smaller scales due to numerical diffusion



Preliminary results of
CDM + neutrinos simulation

ACDM with massive neutrino

@ [=2000 Mpc/h

@ PLANCK 2013 cosmological parameters

Zmi =1eV

aN = 128° and NV=643 for Vlasov simulation:

P!(k)/P=0(k)

a Np=1283 for N-body simulations
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Summary

P We, for the first time, performed the Vlasov-Poisson simulations of self-
gravitating systems in 6D phase space volume.

P Several numerical tests have been checked in comparison with analytical
models and N-body results.

P We apply the Vlasov-Poisson simulations to neutrino dynamics in the LSS
formation to correctly simulate the collisionless damping of neutrinos.

P A new formulation and implementation of Vlasov-Poisson simulations in
the cosmological comoving coordinate.

P We performed preliminary hybrid runs of N-body and Vlasov simulations.
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