Imaginary-time theory for triple-alpha reaction rate

K. YABANA
Center for Computational Sciences, University of Tsukuba

Collaborators:
Y. Funaki RIKEN
T. Akahori U. Tsukuba
K. Yabana, Y. Funaki, Phys. Rev. C85, 055803 (2012)
"Imaginary-time method for the radiative capture reaction rate"
T. Akahori, Y. Funaki, K. Yabana, Phys. Rev. Lett. (to be accepted)
"Imaginary-time theory for triple-alpha reaction rate"

Triple-alpha process

Total angular momentum 0

1953 F. Hoyle predicted resonance state in ${ }^{12} \mathrm{C}$ and later confirmed experimentally.
1985 K. Nomoto proposed an empirical formula applicable at low temperature, assuming sequential $\alpha \alpha$ and $\alpha^{8} \mathrm{Be}$ reactions. (adopted in NACRE)

$$
\langle\alpha \alpha \alpha\rangle=3 \int_{0}^{\infty} \frac{\hbar}{\Gamma_{\alpha}\left(\operatorname{Be}, E_{\alpha \alpha}\right)} \frac{d\langle\alpha \alpha\rangle\left(E_{\alpha \alpha}\right)}{d E_{\alpha \alpha}}\left\langle\alpha \operatorname{Be}\left(E_{\alpha \alpha}\right)\right\rangle d E_{\alpha \alpha}
$$

2009- Serious quantum-mechanical calculations of triple-alpha reaction rate started.
At present, controversial among theories.

Calculated rates deviates among theories at low temperature 10^{26} order of magnitude difference at $10^{7} \mathrm{~K}$

Difficulties and theoretical challenges of triple-alpha reaction

- Experimental measurement is very difficult.
- Lack of exact theory for scatting of three charged particles, (we do not know "Coulomb wave function" for 3-charged particles).
- The reaction rate changes 10^{60} in magnitude between $10^{7}-10^{9} \mathrm{~K}$ due to quantum tunneling nature of the process..

Develop a new theory: Imaginary-time theory

Contents

1. Formalism
2. Numerical results
3. Derive empirical formula from the imaginary-time theory
4. Difficulties of coupled-channels approach

What is the "imaginary-time" ?

Identifying inverse temperature with imaginary-time,

A standard procedure in thermal quantum many-body theory

Difference from ordinary approach

Standard procedure

Cross section as a function of energy, $\sigma(E)$.

Thermal average to obtain reaction rate, $\langle\nu \sigma\rangle$.

Imaginary-time theory

K. Yabana and Y.Funaki. PRC85,055803(2012)

We directly calculate reaction rate, $<\nu \sigma>$, without solving any scattering problem.

Imaginary-time theory: Derivation

Radiative capture cross section

$v \sigma_{f i} \propto\left(\frac{E_{\vec{k}}-E_{f}}{\hbar c}\right)^{2 \lambda+1}\left|\int_{\lambda} d \vec{r} \phi_{f}^{*}(\vec{r}) M_{\lambda \mu} \phi_{\vec{k}}(\vec{r})\right|^{2} \quad \begin{aligned} & M_{\lambda \mu}=\sum_{i \in p} r_{i}^{\lambda} Y_{\lambda \mu}\left(\hat{r}_{i}\right) \\ & \lambda \text { photon multipolarity }\end{aligned}$

Final: bound state Initial: scattering state

$$
\int d \vec{r}\left|\phi_{f}(\vec{r})\right|^{2}=1
$$

$$
\phi_{\hat{k}}(\vec{r}) \rightarrow e^{i \vec{k} \vec{r}}+f(\hat{r}) \frac{e^{i k r}}{r} \quad \text { (2-body) }
$$

Reaction rate at temperature

$$
\text { at } \beta=1 / k_{B} T
$$

$$
\langle v \sigma\rangle \propto \int d \vec{k} e^{-\beta E_{k}} v \sigma_{f i}
$$

$$
\begin{aligned}
&\left\langle v \sigma_{f i}\right\rangle \propto \int d \vec{k} e^{-\beta E_{k}}\left(\frac{E_{\vec{k}}-E_{f}}{\hbar c}\right)^{2 \lambda+1}\left\langle\phi_{f}\right| M_{\lambda \mu}\left|\phi_{\hat{k}}\right\rangle\left\langle\phi_{\hat{k}}\right| M_{\lambda \mu}^{+}\left|\phi_{f}\right\rangle \\
& \quad \text { Eliminate scattering state using spectral representation } \\
& f(\hat{H})=\sum_{n} f\left(E_{n}\right)\left|\phi_{n}\right\rangle\left\langle\phi_{n}\right|+\int d \vec{k} f\left(E_{\vec{k}}\right)\left|\phi_{\hat{k}}\right\rangle\left\langle\phi_{\hat{k}}\right| \\
&\left\langle v \sigma_{f i}\right\rangle \propto\left\langle\phi_{f}\right| M_{\lambda \mu} e^{-\beta \hat{H}}\left(\frac{\hat{H}-E_{f}}{\hbar c}\right)^{2 \lambda+1} \hat{P} M_{\lambda \mu}{ }^{+}\left|\phi_{f}\right\rangle \\
& \hat{P}=1-\sum_{n}\left|\phi_{n}\right\rangle\left\langle\phi_{n}\right|
\end{aligned}
$$

Final expression does not include any scattering states.

Imaginary-time theory : Calculation in practice

$$
\left\langle v \sigma_{f i}\right\rangle \propto\left\langle\phi_{f}\right| M_{\lambda \mu} e^{-\beta \hat{H}}\left(\frac{\hat{H}-E_{f}}{\hbar c}\right)^{2 \lambda+1} \hat{P} M_{\lambda \mu}^{+}\left|\phi_{f}\right\rangle
$$

Start with 2^{+}state of ${ }^{12} \mathrm{C}$
(wave function after radiative capture) $\quad \psi(\beta=0)=M_{\lambda=2, \mu}{ }^{+} \phi_{f}\left({ }^{12} \mathrm{C}, 2^{+}\right)$ multiplied with E2 operator

Evolve along imaginary-time axis $\quad-\frac{\partial}{\partial \beta} \psi(\beta)=H \psi(\beta)$
Reaction rate as expectation value

$$
\langle v \sigma\rangle \propto\left\langle\psi\left(\frac{\beta}{2}\right)\right|\left(\frac{\hat{H}-E_{f}}{\hbar c}\right)^{2 \lambda+1}\left|\psi\left(\frac{\beta}{2}\right)\right\rangle
$$

Hamiltonian of 3 alpha particles
$H=T+V_{12}+V_{23}+V_{31}+V_{123}$
$V_{\alpha \alpha}$ to reproduce ${ }^{8} \mathrm{Be}$ resonance energy
$V_{\alpha \alpha \alpha}$ to reproduce resonance energy of Hoyle state $\left(0_{2}{ }^{+}\right.$of $\left.{ }^{12} \mathrm{C}\right)$

Coordinates

$\psi(\vec{r}, \vec{R}, \beta)=\frac{u_{l=L=0}(r, R, \beta)}{r R}\left[Y_{l=0}(\hat{r}) Y_{L=0}(\hat{R})\right]_{J=0}$
Jacobi coordinate, $l=L=0$ only (as in CDCC) Uniform grid for R and r

Triple-alpha reaction rate by the imaginary-time theory almost coincides with empirical NACRE rate.

Convergence with respect to spatial size ($R_{\max }$ and $r_{\max }$) in evolving along imaginary-time $-\frac{\partial}{\partial \beta} \psi(\beta)=H \psi(\beta)$

Dominant ${ }^{12} \mathrm{C}$ synthesis process depends on temperature
Total angular momentum 0

Low Temperature

Direct 3-alpha collision

Changes of reaction mechanisms at two temperatures in the empirical theory

K. Nomoto, Astrophys. J. 253, 798 (1982)

Average and variance of reaction energies as a function of temperature

Though empirical and imaginary-time theories look very different, calculated rate is almost the same.

Nomoto 1985, NACRE 1999:
Sequential 2-body process

$$
\langle\alpha \alpha \alpha\rangle=3 \int_{0}^{\infty} \frac{\hbar}{\Gamma_{\alpha}\left(\operatorname{Be}, E_{\alpha \alpha}\right)} \frac{d\langle\alpha \alpha\rangle\left(E_{\alpha \alpha}\right)}{d E_{\alpha \alpha}}\left\langle\alpha \operatorname{Be}\left(E_{\alpha \alpha}\right)\right\rangle d E_{\alpha \alpha}
$$

Imaginary-time theory

$$
\langle\alpha \alpha \alpha\rangle \propto\left\langle\phi_{f}\right| M_{\lambda \mu} e^{-\beta \hat{H}}\left(\frac{\hat{H}+\left|E_{f}\right|}{\hbar c}\right)^{2 \lambda+1} \hat{P} M_{\lambda \mu}{ }^{+}\left|\phi_{f}\right\rangle
$$

We next examine the relation analytically using R-matrix theory.

Derive the empirical formula in the imaginary-time theory

Two basic assumptions for microscopic 3-body Hamiltonian

1. The Hamiltonian is separable, into $\alpha-\alpha$ and $\alpha-{ }^{8} \mathrm{Be}$ parts

$$
H=h_{\alpha \alpha}+h_{\alpha^{8} \mathrm{Be}}
$$

2. Hoyle state is described by a product of $\alpha-\alpha$ and $\alpha-{ }^{8} \mathrm{Be}$ resonant wave functions.

$$
\Phi_{H} \approx \phi_{\alpha \alpha}^{\text {res. }}(\vec{r}) \phi_{\alpha \mathrm{Be}}^{\text {res. }}(\vec{R})
$$

Approximate spectral representation of H using R-matrix theory

$$
\begin{aligned}
& f(\hat{H}) \rightarrow\left|\phi_{H}\right\rangle\left\langle\phi_{H}\right| \int d E_{\alpha \alpha} \frac{1}{2 \pi} \frac{\Gamma_{r}\left({ }^{8} \mathrm{Be} ; E_{\alpha \alpha}\right)}{\left(E_{r}\left({ }^{8} \mathrm{Be}\right)+\Delta_{r}\left(E_{\alpha \alpha}\right)-E_{\alpha \alpha}\right)^{2}+\Gamma_{r}\left(E_{\alpha \alpha}\right) / 4} \\
& \times \int d E_{\alpha^{8} \mathrm{Be}} \frac{1}{2 \pi} \frac{\Gamma_{r}\left({ }^{12} \mathrm{C} ; E_{\alpha^{8} \mathrm{Be}}\right)}{\left(E_{r}\left({ }^{12} \mathrm{C}\right)+\Delta_{r}\left(E_{\alpha^{8} \mathrm{Be}}\right)-E_{\alpha^{8} \mathrm{Be}}\right)^{2}+\Gamma_{r}\left(E_{\alpha^{8} \mathrm{Be}}\right) / 4} \\
& \times f\left(E_{\alpha \alpha}+E_{\alpha^{8} \mathrm{Be}}\right)
\end{aligned}
$$

Put it in the rate expression of the imaginary-time theory

$$
\langle\alpha \alpha \alpha\rangle \propto\left\langle\phi_{f}\right| M_{\lambda \mu} e^{-\beta \hat{H}}\left(\frac{\hat{H}-E_{f}}{\hbar c}\right)^{2 \lambda+1} \hat{P} M_{\lambda \mu}{ }^{+}\left|\phi_{f}\right\rangle
$$

Triple-alpha reaction rate derived from imaginary-time theory

$$
\begin{aligned}
\langle\alpha \alpha \alpha\rangle= & 6 \cdot 3^{\frac{3}{2}}\left(\frac{2 \pi \hbar^{2}}{M_{\alpha} k T}\right)^{3} \\
& \times \int d E_{\alpha \alpha} \frac{1}{2 \pi} \frac{\Gamma_{\alpha}\left({ }^{8} \mathrm{Be} ; E_{\alpha \alpha}\right)}{\left(E_{r}\left({ }^{8} \mathrm{Be}\right)-E_{\alpha \alpha}\right)^{2}+\Gamma_{\alpha}\left(E_{\alpha \alpha}\right) / 4} \\
& \times \int d E_{\alpha^{8} \mathrm{Be}} \frac{1}{2 \pi}\left(E_{r}\left({ }^{12} \mathrm{C}\right)-E_{\alpha^{8} \mathrm{Be}}\right)^{2}+\Gamma_{\alpha}\left(E_{\alpha^{8} \mathrm{Be}}\right) / 4 \\
& \times \exp \left[-\frac{\left.E_{\alpha \alpha}+E_{\alpha^{8} \mathrm{Be}}\right] \cdot \Gamma_{\gamma}\left({ }^{12} \mathrm{C}\right)\left(\frac{E_{\alpha \alpha}+E_{\alpha^{8} \mathrm{Be}}-E\left({ }^{12} \mathrm{C} ; 2^{+}\right)}{E\left(\left(^{12} \mathrm{C} ; 0_{2}{ }^{+}\right)-E\left({ }^{12} \mathrm{C} ; 2^{+}\right)\right.}\right)^{2 \lambda+1}}{k T}\right]
\end{aligned}
$$

We ignore energy shift $\Delta(E)$

This expression mostly coincides with that of NACRE

$$
\langle\alpha \alpha \alpha\rangle=3 \int_{0}^{\infty} \frac{\hbar}{\Gamma_{\alpha}\left(\operatorname{Be}, E_{\alpha \alpha}\right)} \frac{d\langle\alpha \alpha\rangle\left(E_{\alpha \alpha}\right)}{d E_{\alpha \alpha}}\left\langle\alpha \operatorname{Be}\left(E_{\alpha \alpha}\right)\right\rangle d E_{\alpha \alpha}
$$

There are a few minor differences.

$$
\frac{\Gamma_{\alpha}\left({ }^{12} \mathrm{C} ; E_{\alpha^{8} \mathrm{Be}}\right)}{\left(E_{r}\left({ }^{12} \mathrm{C}\right)-E_{\alpha^{8} \mathrm{Be}}\right)^{2}+\Gamma_{\alpha}\left(E_{\alpha^{8} \mathrm{Be}}\right) / 4} \quad \square \frac{\Gamma_{\alpha}\left({ }^{12} \mathrm{C} ; E_{\alpha^{8} \mathrm{Be}}\right)}{\left(E_{r}\left({ }^{12} \mathrm{C}\right)+E_{r}\left({ }^{8} \mathrm{Be}\right)-E_{\alpha^{8} \mathrm{Be}}-E_{\alpha \alpha}\right)^{2}+\Gamma_{\alpha}\left(E_{\alpha^{8} \mathrm{Be}}\right) / 4}
$$

Imaginary-time theory

NACRE
(Not symmetric wrt $\alpha-\alpha$ and $\alpha-{ }^{8} \mathrm{Be}$)

Why different theories provide so different reaction rates?

$$
\langle\alpha \alpha \alpha\rangle_{\mathrm{CDCC}} \gg\langle\alpha \alpha \alpha\rangle_{\text {Imaginary-Time }} \approx\langle\alpha \alpha \alpha\rangle_{\mathrm{NACRE}}
$$

10^{26} order of magnitude difference at $10^{7} \mathrm{~K}$

To clarify the origin of theoretical controversy,

we use coupled-channel expansion in the imaginary-time formalism
We first solve $\alpha-\alpha$ 2-body eigenvalue problem.

$$
\begin{aligned}
& h_{\alpha \alpha} w_{n}(r)=\varepsilon_{n} w_{n}(r) \\
& \int_{0}^{r_{\text {max }}} d r w_{m}(r) w_{n}(r)=\delta_{m n}
\end{aligned}
$$

We then expand 3-body wave function with this basis

$$
u(r, R, \beta)=\sum_{n} \chi_{n}(R, \beta) w_{n}(r)
$$

We then solve "coupled-channel imaginary-time equation"

$$
-\frac{\partial}{\partial \beta} \chi_{n}(R, \beta)=\left[-\frac{\hbar^{2}}{2 M} \frac{\partial^{2}}{\partial R^{2}}+\varepsilon_{n}\right] \chi_{n}(R, \beta)+\sum_{n^{\prime}} V_{n n^{\prime}}(R) \chi_{n^{\prime}}(R, \beta)
$$

Using complete set (all eigenfunction), $\left\{w_{n}(r)\right\}$, results should not change. However, if we make a truncation, the result may be different.

Convergence of expansion is extremely slow !

Warning the use of coupled-channel method for quantum tunneling

Conclusion

Imaginary-time theory for radiative capture process

- It does not require any scattering solution to calculate reaction rate

Triple-alpha reaction rate using the imaginary-time theory

- We can calculate a convergent reaction rate.
- The calculated reaction rate mostly coincides with that of NACRE
- Changes of reaction mechanisms occur at the same temperature of those of NACRE.

Analytical relation between the imaginary-time theory and the empirical formula

- Using R-matrix theory and assuming separable approximation, the imaginary-time theory gives almost the same formula as that of NACRE.

Origin of theoretical controversy

- We find an extremely slow convergence if we make a coupled-channels expansion.

