

External Review on Center for Computational Sciences University of Tsukuba 2007.10.30-11.1

Activities and Collaborations 8 Division of Materials and Life Sciences

Quantum Many-Body Systems Group

K. Yabana

Quantum Many-Body Systems Group Members and research interests

Atomic Nuclei	Atoms, Molecules	Solids
Composed of protons and neutro strong interaction	ons Composed of elec Coulomb in	ctrons and ions iteraction
Nuclear Physics		
K. Yabana Y. Hashimoto T. Nakatsukasa (-200	7.7)	
Common tool	K. Hino (-2 H. Koizum XM. Tong	2007.3) i g (2005.10-)
Jommon tool: Quantum dynamics, Nave mechanical simu	A N N	Atomic Physics Aaterial Science

Computational Quantum Dynamics Computational Optical Sciences

Morning session: Yabana, Nakatsukasa

Time-dependent Density-Functional Theory (TDDFT)

$$\left\{-\frac{\hbar^2}{2m}\vec{\nabla}^2 + V_{eff}(\vec{r},t)\right\}\psi_i(\vec{r},t) = i\hbar\frac{\partial}{\partial t}\psi_i(\vec{r},t)$$

Real-space 3-dim grid representation Real-time evolution of the wave function

3 topics

- 1. Electronic dynamics under laser field
- 2. Nuclear density-functional theory
- 3. Developing real-time, real-space code

Afternoon parallel session: Tong, Koizumi, Hashimoto

Atoms, molecules, solid under intense, ultra-short pulse laser

One of the frontiers in current laser sciences

Laser intensity: 10¹³-10¹⁵W/cm²

laser electric field is comparable to field inside materials

Nonlinear, nonperturbative nature in electron dynamics

Time resolution of femto (10⁻¹⁵s) to atto (10⁻¹⁸s)-second

will be discussed by X.-M. Tong

Ethylene molecule under intense laser field

- Tunnel ionization,
- rescattering,
- high harmonic generation

Laser Induced breakdown in dielectrics

Femtosecond laser machining Non-thermal, precise cutting technique

M.D. Perry et.al, J. Appl. Phys. 85, 6803 (1999)

FIG. 1. (a) Drilling of enamel (tooth) with conventional 1053 nm, nanosecond pulses (ablation threshold=30 J/cm² for τ_p =1.4 ns). (b) Same as in (a) but with the pulse duration reduced to the ultrashort regime (ablation threshold=3 J/cm² for τ_p =350 fs). In both cases, the laser spot size was 300 μ m. (c) cross section of hole made with 350 fs pulses.

We have achieved First-principles Electron Dynamics Simulation

- -First calculation of electron dynamics in solid under intense pulse laser
- -First demonstration of optical breakdown within the time-dependent density-functional theory

Insulator

Collaboration with JAEA

Irradiation of intense, ultra-short pulse laser on dielectrics PACS

Calculations are achieved partly on PACS-CS.

Energy transfer from laser to electrons

2 photon absorption Keldysh theory (1965)

Electron dynamics inside bulk material

Intensity $I = 3.5 \times 10^{14} (W/cm^2)$ Frequency $\omega = 0.5 (eV)$

Electric Field (a.u.)

Total electron density (110)

Density difference from ground state (110)

Calculation: J.-I. Iwata

Density functional theory for nuclear structure

Nuclei

- Quantum liquid of two kinds of fermions (protons and neutrons)
- Strong interaction

Success of density functional theory for

Shapes

Superdeformation

Hyperdeformatio

3:1

uperdeform

Oblate

Octupole Y31

Octupole Y₃₀

2:1

1.

Current hot issues:

How and where the elements (nuclei) are created?
Find universal nuclear energy density functional of nuclei.

(UNEDF project, SciDAC, Yabana and Nakatsukasa take part in as foreign collaborator.)

- First principle calculation of nuclear force. (Ishii, Aoki)
- Green function Monte Carlo for light nuclei (Argonne, USA)
- Phenomenological construction of energy functional.

RIBF at RIKEN (T. Nakatsukasa, 2007.8-) (Radioactive Ion Beam Factory, 2007-)

Shape, excitation (optical response), and density-functional.

TDDFT for electronic and nuclear systems

Nuclear density-functional

Electronic density-functional for molecules

Toward "Computational Nuclear Data Table"

First attempt for comprehensive calculation for optical responses of atomic nuclei (PACS-CS)

Computation for large systems:

developing efficient MPI code for massively-parallel machine under cooperation with

- computational condenced matter group (real-space DFT code)
- high performance computing group

$$\left\{-\frac{\hbar^2}{2m}\vec{\nabla}^2 + \sum_a V_{ion}(\vec{r}-\vec{R}_a) + e^2\int d\vec{r} \cdot \frac{n(\vec{r}',t)}{\left|\vec{r}-\vec{r}'\right|} + \mu_{xc}(n(\vec{r},t)) + V_{ext}(\vec{r},t)\right\}\psi_i(\vec{r},t) = i\hbar\frac{\partial}{\partial t}\psi_i(\vec{r},t)$$

 $\Psi_{\underline{m}}(\underline{x_i, y_j, z_k, t_l})$

orbital parallel

- Simple coding
- Communication among whole processors in constructing density from orbitals.

space division

- communication only with adjacent processors
- good balance among processors

Present status of space-division parallel

5 orbitals
30 ³ /CPU
256 = 4x8x8
10,000

$$\left\{-\frac{\hbar^2}{2m}\vec{\nabla}^2 + V(\vec{r},t)\right\}\psi_i(\vec{r},t) = i\hbar\frac{\partial}{\partial t}\psi_i(\vec{r},t)$$

	Computational time	Communication time (adjacent)	Communication time (Allreduce)
$-\frac{\hbar^2}{2m}\Delta\psi_m(x,y,z,t)$	959 s (23.9%)	333 s (8.3%)	
$V(x, y, z, t)\psi_m(x, y, z, t)$	306 s (7.6%)	102 s (2.5%)	
$\Delta\phi(x, y, z) = -4\pi\rho(x, y, z)$	1290 s (32.2%)	227 s (5.7%)	378 s (9.4%)

In total, computation 71.2% + communication 28.8%

Example: Coulomb explosion of fullerene (C_{60}) under intense laser pulse

Quantum Many-Body Systems Group

- Quantum dynamics simulation
- Computational optical sciences

Particle physics Lattice QCD Nuclear force

- Real-time, -space DFT **Time-dependent Efficient parallel code density-functional theory**

Nuclear systems

- construct DF
- systematics

Electronic systems

- Intense field
- excited states

Computational Life Sciences

Condenced matter physics

High performance computing

- Excited states, Optical response of bio-molecules
- Electron dynamics in XFEL

Astrophysics

Origin of elements Evolution of stars