

Quantum Dynamics in Few-Body System

K. Hino and X. M. Tong

Division of Materials and Life Sciences

Oct. 31, 2007 External Review on Center for Computational Sciences,

Outlines

Introduction

- What we are working on
- Why we belong to the Center
- What we have done
 - Wannier Stark Ladder
 - Intense Laser-Material Interactions
- > What we plan to do
 - Develop new numerical tools
 - Investigate dynamics in few-body system

Oct. 31, 2007 External Review on Center for Computational Sciences, 2/15

What we are working on

Study the dynamical processes in few-body system by solving

 $i\frac{\partial}{\partial t}\Psi(t) = H(t)\Psi(t)$ $H\Psi = E\Psi$ perturbative

non-perturbative

numerically.

Particles: nuclei, electrons, photons etc.

Processes: electrons, atoms, molecules in the external fields collisions between electrons, ions, atoms, molecules ionic, atomic, molecular structures (excited states)

Objects:

Understand the processes; *Provide* the data; *Control* the quantum dynamical processes.

3/15 External Review on Center for Computational Sciences, Oct. 31, 2007

Why we belong to the Center

Characteristics of the Study:

- The number of particles involved is accountable with the finger
- Interactions between the particles are well known
- Most of the dynamical processes cannot be solved analytically

Example: Helium atoms (\mathbb{B} + 2 e), The transition from quantum to classic physics ($\sim \rightarrow 0$).

To do the simulation, we need a big computer.

To learn things, we have to discuss with our colleagues

Common interests (computation) and common tools (computer) put us together.

Oct. 31, 2007 External Review on Center for Computational Sciences, 4/15

Example I: Wannier-Stark Ladder

WSL space structure:

WSL energy structure

Quantum Dynamics & Quantum Control

Fano Resonance

Oct. 31, 2007 External Review on Center for Computational Sciences, 5/15

Linear Optical Response

67Å-GaAs / 17Å-Ga_{0.7}Al_{0.3}As (F=13.3kV/cm)

Oct. 31, 2007 External Review on Center for Computational Sciences, 6/15

Quantum Control: DWSL

The energy structure can be controlled by F_{ac} and measured by a weak probe field.

E: quasienergy calculated by Floquet theory

K. Hino, X. M. Tong and N. Toshima, PRB, accepted (2007).

Oct. 31, 2007 External Review on Center for Computational Sciences, 7/15

Example II: Laser Material Interactions

Electron beam

conventional non-coherent

- Radiative Rec.
- Ion. or Dis.
- Scattering

rescattering coherent (HHG) (Mol. Clock) (Imaging)

Oct. 31, 2007 External Review on Center for Computational Sciences, 8/15

Computational Scheme

Oct. 31, 2007 External Review on Center for Computational Sciences, 9/15

TD-momentum distribution

Develop a time-dependent Floquet method: to study atoms, molecules, clusters or semiconductors in a periodic time-dependent external field.

 $i\frac{\partial}{\partial t}\Psi(t) = H(t)\Psi(t) \quad \text{with} \quad H(t) = H(t+T)$ $\Psi(t) = e^{-iEt} \sum_{n=-\infty}^{\infty} e^{-i2n\pi \frac{t}{T}} \psi_n$

Time-independent method:

a coupled channel eigen-value problem;

/ n³

Time-dependent method:

propagate the w.f. for one period and dig out the dynamic information based on the Floquet theory. / n

Oct. 31, 2007 External Review on Center for Computational Sciences, 11/15

Develop a time-dependent method: to study the photoionization of many-electron system [DFT + Configuration Interaction (CI)]

$$h\nu + A \rightarrow \begin{cases} A^+ + e \\ A^* \end{pmatrix} \rightarrow \begin{cases} A^+ + e \\ A^+ + e \\ A + h\nu \end{cases}$$

Difficulties: Suggested: too many ionization channels and continuum w.f. Structures calculated by DFT and CI (well developed); Dynamics investigated by time-dependent method.

$$\Psi(0) = -i \int_{-\infty}^{0} e^{-i \int_{\tau}^{0} H d\tau'} V_{in} e^{-iE_0 \tau} \Psi_0 d\tau + e^{-iE_0 t} \Psi_0$$

Key step: the continuum w.f. in the outer region will be absorbed.

Oct. 31, 2007 External Review on Center for Computational Sciences, 12/15

Study capture processes by our newly developed TD-method [1].

$\bar{p} + H \rightarrow \bar{p}p + e$

Basic research: Application: formation and properties of anti-material charge capture processes in astrophysics [2]

 [1] "State-specified protonium formation in low-energy antiproton-hydrogen-atom collisions", <u>X. M. Tong</u>, <u>K. Hino</u>, and N. Toshima, *PRL* 97, 243202 (2006).
[2] "X-ray emission from comets", T. E. Cravens, *Science* 296, 1042 (2002)

Oct. 31, 2007 External Review on Center for Computational Sciences, 13/15

Study intense laser material interactions by our TD-method [3].

Steer the rescattering wavepacket by tuning laser parameters; Study the dynamics in the femto-second (10⁻¹⁵s) time scale [4]; Study the tomographic imaging of molecular orbitals [5].

[3] "Numerical Observation of the Rescattering Wavepacket in Laser-Atom Interactions", <u>X. M. Tong</u>, S. Watahiki, <u>K. Hino</u> and N. Toshima, *PRL* **99**, 093001 (2007).

[4] "X-ray driven femtosecond molecular dynamics",
E. Gagnon, P. Ranitovic, <u>X. M. Tong</u>, C. L. Cocke *et al.*, *Science* **317**, 1374 (2007).

[5] "Tomographic imaging of molecular orbitals",J. Itatani, J. Levesque, D. Zeidler, H. Niikura, H. Pepin *et al.*, *Nature*, **432**, 867 (2004).

Oct. 31, 2007 External Review on Center for Computational Sciences, 14/15

Thank You

Oct. 31, 2007 External Review on Center for Computational Sciences, 15/15