

High Resolution Simulation of First Generation Star Formation

Tamon SUWA (U. Tsukuba)

M. Umemura (U. Tsukuba) D. Sato (U. Tsukuba) H. Susa (Konan U.)

Mass of the First Stars

- Massive stars ($\geq 100 \text{ M}_{\text{O}}$)
 - Bromm, Coppi, & Larson (2002)
 - Clumps of ~1000 M_{O} is formed
 - Yoshida et al.(2006)
 - $M_{ZAMS} \sim 100 M_{O}$
 - O'Shea & Norman (2007)
 - 12 simulations of adaptive mesh refinement (AMR)
 - Isolate core which suggest stellar mass of ~100M_o
- Low mass stars ($\sim 1 M_{O}$)
 - Low mass stars can be formed by fragmentation of dense (n>10⁵cm⁻³) filament (Nakamura & Umemura 2001).

Problems

- What is the functional form of the primordial IMF?
- Whether or not low-mass star can be formed by fragmentation of filaments in realistic situation?

This work

 Using uniformly high-resolution cosmological simulation, we investigate a density peak of our simulation box.

FIRST Cluster

- Hybrid PC cluster system
 - 256 (16 x 16) node 2U-size server PC
 - 496 CPU +
 16 Blade-GRAPE
 224 Blade-GRAPE X64
 - Main memory:
 240 x 6GB + 16 x 10GB
 = 1.6 TB

- Total performance (Host): 3.1 Tflops
- Each node equip a newly-developed board for gravity calculations, Blade-GRAPE

Blade-GRAPE

- Blade-GRAPE
 - Embedded Special Purpose Processor for Gravity
 - Each board has 16MB memory
 - Corresponds to 256K particles at the maximum
 - Theoretical peak performance: 136.8 GFlops
- Blade-GRAPE X64
 - 64 bit PCI-X version with FPGA
 - newly developed in 2006
- Total performance:
 33 Tflops

$P^{3}M + GRAPE+SPH$

- Gravitational forces are solved by Particle-Particle-Particle-Mesh (P³M) scheme
 - PP-part is accelerated by Blade-GRAPE
 - Calculation with GRAPE is about 10 times faster than that by host CPUs

 Hydrodynamic processes are solved by Smoothed Particle Hydrodynamics (SPH) scheme (Springel & Hernquist 2002)

н-

 H_2^+

е

 γ

Η

H-

 H^+

 \mathbf{H}

н

 H^-

 H_2

Chemical reaction & heating/cooling

- 6 species of chemical elements are included (e⁻, H, H⁺, H⁻, H₂, H₂⁺)
 – Minimal model of Galli & Palla (1998)
- Main reaction
 - Low density (n<10⁸cm⁻³) Proton reaction $p + H \rightarrow H_2^+ + \gamma$ Electron reaction $H + e^- \rightarrow H^- + \gamma$
 - $H_2^+ + H \rightarrow H_2^- + p \qquad H^- + H \rightarrow H_2^- + e^-$
 - High density (n>10⁸cm⁻³)

 $3H \rightarrow H_2 + H_3 - body$ $2H + H_2 \rightarrow 2H_2$

Simulation setup

- # of particles: 2 × 30 million (DM+SPH)
- Mass resolution:
 - $-0.3M_{O}$ (SPH)
 - $1.5 M_{O} (DM)$
- Box size: 100kpc (comoving)
- Mesh Size: L_{box}/256
- Initial condition is generated at z=15 using truncated Zeldvich approx.
- Cosmological parameters: WMAP 3-year: (Ω₀,Ω_b, h)=(0.24, 0.04, 0.73)

Mass profile of the peak

pc (physical)

Estimation of stellar mass

We estimate the stellar mass

$$\dot{M}(c_s)t_{KH}(M) = M$$

•M:Mass in a radius R

• t_{KH} : Kelvin-Helmholtz time determined by mass •dM/dt (= $c_s^{3/G}$): Mass accretion rate

Estimated mass of the first star at the peak is M~25M₀

Discussion

- This low-mass is due to low-temperature (~120 K) at the center of the peak
- The reason might be under estimation of SPH gravitation
 - Weak contraction force may not balance radiative cooling

Summary

- We perform a cosmological simulation of first star generation with FIRST cluster.
- Baryon mass resolution is 0.3 M_o all over the simulation box.
- Estimated stellar mass at the center of the densest peak is 20~30M_{O.}
 - This low-mass is due to low-temperature
 (~120 K) at the center of the peak.
 - Physical validity of such temperature is still controversial.