2007. 10. 31

Group Members

Faculty (3)

Masayuki Umemura (Professor) Hiroyuki Hirashita (Assistant Professor) Kohji Yoshikawa (Assistant Professor)

Postdoctral Fellows (4)

Yoshiaki Kato Tamon Suwa Takuya Akahori Yasuyuki Watabe (in Italy)

Graduate Students (15) Ikko Shimizu (D3) Kenji Hasegawa (D3) Seiji Yasuda (D2) **Rogel Mari D. Sese (D2)** Chizuru Akizuki (D1) Masaru Sakuma (D1) **Daisuke Sato (D1)** Hidenobu Yajima (D1) Takayuki Koizumi (M2) Mayumi Chiba (M2) Masao Doi (M2) **Tomohiro Ichikawa (M1)** Makoto Takenaka (M1) **Ryota Narita (M1)** Takayuki Wada (M1)

<u>Undergraduate Students (4)</u> Yuki Kubota (B4) Yuko Kurotori (B4) Keiki Saitoh (B4) Masahito Matsumine (B4)

History

1993: Masayuki Umemura from NAOJ

1994: Taishi Nakamoto from NAOJ (moved to TiTech, 2006) Joined CP-PACS Project

Collaboration with particle physicists and computer scientists Started 3D Radiative Transfer

1997:

"Development of Next Generation Massive Parallel Computer Project" started (1997 - 2001)

Collaboration with particle physicists and computer scientists HMCS (Heterogeneous Multi-computer System) constructed Started 3D Radiation Hydrodynamics

2000:

International Conference, The Physics of Galaxy Formation 2004:

Center for Computational Sciences set up FIRST Project started

Collaboration with computer scientists

2005: Hiroyuki Hirashita from Nagoya U. 2007: Kohji Yoshikawa from Tokyo U.

$$\frac{1}{c}\frac{\partial I_{v}}{\partial t} + \mathbf{n} \cdot \nabla I_{v} = \chi_{v}(S_{v} - I_{v})$$

Freedom: 3D in space, 2D in directions, 1D in frequency = 6D problem

3D Radiative Transfer with CP-PACS

 $N^3 = 128^3, N_{\theta} = N_{\phi} = 128, N_{\nu} = 6$

Total memory: $23N^3 + 3N^2N_{\theta}N_{\phi}N_{\nu} = 38.7$ GB

Total operations: $f N_{\text{iter}} N^3 N_{\theta} N_{\phi} N_{\nu} = 1.14 \text{ Tflops} \cdot \text{hr} \ (f \approx 200, N_{\text{iter}} = 100)$

Short Characteristics method

(Kunasz&Auer1988)

Transfer is solved along a short ray across each grid

• Simple coding

• Operations are fewer than long char.

$$\sim N_x N_y N_z \cdot N_\theta N_\varphi N_\nu$$

• Interpolation between adjacent grids causes numerical diffusion.

3D Radiative Transfer with Scattering

Nakamoto, Umemura, Susa 2001

PAVEMENT - Parallel I/O & Parallel VR

"Development of Next Generation Massive Parallel Computer Project"

Reionization of the Universe 3D Radiative Transfer

ART

(Authentic Radiative Transfer)

Transfer is solved along a long ray across the domain

- Physical quantities are interpolated at each grid
 - A bit complex coding
 - <u>No</u> numerical diffusion (accuracy equivalent to long char.)
 - Operations (same as short char.)
 - $\sim N_x N_y N_z \cdot N_\theta N_\varphi N_\nu$

TEST OF BEAMING

Short Char.

ART

<u>Cosmological Radiative Transfer Codes Comparison Project I:</u> <u>The Static Density Field Tests</u>

2006, MNRAS, 371, 1057

Ilian T. Iliev, Benedetta Ciardi, Marcelo A. Alvarez, Antonella Maselli, Andrea Ferrara, Nickolay Y. Gnedin, Garrelt Mellema, Taishi Nakamoto, Michael L. Norman, Alexei O. Razoumov, Erik-Jan Rijkhorst, Jelle Ritzerveld, Paul R. Shapiro, Hajime Susa, Masayuki Umemura, Daniel J. Whalen

Direct Photons + Diffuse Photons

Hiroi, Umemura, Nakamoto, in prep

Reionization at z=10

Galaxy Formation with UV BackgroundThree Elements for Galaxy Formation

CDM Fluctuations

Random Gaussian Density Fields

Cooling Diagram (Rees & Ostriker 1977)

No stars form unless baryonic matter is self-shielded from UVB !

Formation of Dwarf Galaxies during the Cosmic Reionization Susa & Umemura 2004, ApJ, 600,1

1.007E+02

TREE-SPH + Radiation Transfer + Non-equilibrium Chemistry

 $N_{DM} = N_{SPH} = 131072$

 $\overline{M}_{\rm vir} = 6 \times 10^8 M_{\odot}$

 $Z_{c} = 7.6$

Final Stellar Fraction

 $M_{\rm vir} = 10^{8-9} M_{\odot}$ 20 km s⁻¹ d $V_{\rm circ}$ d 40 km s⁻¹

Dwarf galaxies do form even during reionization

almost regardless of c_{*} !

> $M_{\rm vir} = 10^9 M_{\odot}$ $c_* = 0.01, 0.1, 1$ $M_{\rm vir} = 10^8 M_{\odot}$ $c_* = 0.01, 0.1, 1$

 $f_{\text{star}} \Box 7 \times 10^{-2} (1 + z_c) + b(M) \quad b(10^9 M_{\odot}) = 0.35, \ b(10^8 M_{\odot}) = 0.15$

Galaxy Evolution by Multiple SN Explosions By Farth Simulator & CP-PACS

1024³ Hydrodynamic Calaculations 80,000,000 SN explosions

> Mori and Umemura, 2006, Nature, 440, 644

> > Cover page of Nature (March 30, 2006)

GALACTIC VOYAGE Ahigh-resolution model of galaxy formation

> NATUREJOBS Angiogenesis *末綴込: Jobs and Events 募集広告特集

INTELLIGENCE What makes a kid 'brainy'? PROTEOMICS Inside the cellular machine ALTRUISM The green beard effect

Evolution of Gas Density

Total Mass: $10^{11} M_{\odot}$ Gas Mass: $1.3 \times 10^{10} M_{\odot}$ # of Subunits: 20 Box Size: 134 kpc Grid Points: 1024^3

Simulation

Comparison of the simulation with observation

Left: Projected distribution of Ly α emission derived by numerical results. Right upper: Ly α image of the LABs observed by Matsuda et al. (2004) Right lower: Simulation result smoothed with a Gaussian kernel with a FWHM of 1.0".

Subsequent Dynamical Evolution with N-body Simulation with Million Particles

Pop III Binary Formation

Saigo, Matsumoto, Umemura, 2004, ApJL, 615, L65

<u>Present-day Stars</u> over 50% are binaries !

Pop III Stars

massive binaries

3D Simulation with nested grids

3D nested grid with 20 Levels $\Delta x = L / 128 \times 2^{19} = 8.3 \times 10^{-5} AU$

Survival of BH Accretion Disk from SN

Sato & Umemura 2007

 $M_{\rm SN}$ =100 M_{\odot} , $M_{\rm BH}$ =1000 M_{\odot} $E_{\rm SN}$ =30 $E_{\rm disk}$

70% of accretion disk is left

Future Plan

1. Intensive Simulations with FIRST simulator Operation of FIRST continues after 2007 as well

2. Collaborations with Other Divisions

- *with* Division of High Performance Computing Systems Multiple Architecture Seamless System (MASS)
 - Extension of FIRST simulator (with SSE, Graphic board, etc.)

with Division of Materials and Life Sciences

ab initio (DFT) calculations of hydrogen molecule reactions (H+H+H \leftrightarrow H₂+H) -- First star formation

 \Rightarrow Quantum Astrophysics

3. "Computational Observatory" Project

Computational Observatory Project

Thank you

Computational Science Colloquium 15:30, Nov 1, 2007 Workshop Room

Activities at the Laboratory for Computational Astrophysics, UCSD

Prof. Michael L. Norman *University of California, San Diego*