

Fusional Integrator for Radiation-hydrodynamic Systems in Tsukuba University for elucidating **FIRST** generation objects

Grants-in-Aid for Specially Promoted Research, MEXT in Japan

FIRST Project

"Elucidation on the origin of *first* generation objects in the Universe with Heterogeneous Multi-Computer System"

2004~2007

Total budget is 428 million yen (US\$3.6 million)

Division of Computational Astrophysics

M. Umemura K. Yoshikawa (2007-) H. Hirashita Y. Kato (2005-) T. Suwa (2005-) T. Akahori (2007-) J. Sato (2004-2006) T. Nakamoto (Tokyo I.Tech) H. Susa (U Kounan) M. Mori (U Senshu) Division of High Performance Computing Systems

M. Sato (2004) T. Boku D. Takahashi O. Tatebe (2006-)

Core Members

Tree Requisite Calaculations

Astrophysical Radiation Hydrodynamics

Radiation Hydrodynamics

<u>6D Radiation Hydrodynamics (space, directions, frequencies)</u> operations $\propto N_x N_y N_z \cdot N_\theta N_\varphi \cdot M_\nu = 5$ Tera $(N = 100, N_\nu = 500)$

Development of Next Generation Massive Parallel Computer Project (1997 - 2001) U Tsukuba & U Tokyo

HMCS: Heterogeneous Multi-Computer System

Necessity for New Type of Heterogeneous Computer System

Objective

- Radiation Hydrodynamics with 10 million particles
- Computational time of several months

<u>Requirements</u>

- **1 Host: several Tflops**
- **②** Gravity calculation: several 10 Tflops
- **③** High communication bandwidth

Solution

- **1** PC cluster
- **(2)** Embedded special-purpose processor
- **③** High performance network

"FIRST" Simulator

A New-type of Hybrid Cluster

PC cluster embedded with special board of gravity calculations.

FIRST Simulator

Blade-GRAPE X64

Blade-GRAPE

Embedded Special Purpose Processor for Gravity

(Newly-developed in 2005)

- •2 PCI-X bass full slots for 2U server
- •10 layers in a board
- •4 GRAPE6 chips = **136.8GFLOPS**
- •electric power of 54W
- (from power supply for disk drive)memory of 16MB (260 thousand particles)

First Model of "FIRST" Simulator

Cooperations HP Co. Best Systems Inc. Sumi-Sho Computer Systems Co.

<u>May 2005</u>

16 nodes HP Cluster with Blade-GRAPE Performance Host 217 Gflops Blade-GRAPE 2.2 Tflops

Blade-GRAPE X64

(Newly developed in 2006)

64 bit PCI-X version with FPGA

<u>Cooperation</u> Hamamatsu Metrics Co. K&F Computing Research Co.

"FIRST" Simulator

Completed in March, 2007

256 (16 × 16) nodes 496 CPU + 16 Blade-GRAPE 224 Blade-GRAPE X64

Total Performance = 36.1 Tflops Host 3.1 Tflops Blade-GRAPE 33 Tflops

Total Memory = 1.6TB

Total storage = 22TB (Gfarm)

Blade-GRAPE X64

Gfarm File System

Gfarm file system = Scalable virtual file system federating local file systems of cluster nodes

SC06 Storage Challenge Winner in Large-Systems by attaining 52GB/s for 1112 node system in KEK, Japan

Tatebe et al. (SC06)

Gfarm on FIRST

- 1 Meta-data server (first-fs2)
- 256 filesystem nodes

(22**TB**)

Network

Uniform Connection to 240 Port Gbit Ether Switch for first0101-1516

Blade-GRAPE Performance

Performance of "FIRST" Simulator

• PC Cluster +Blade-GRAPE Peak speed=33.3Tflops Effective speed=32.3Tflops (N=260,000)

Press, News, Exhibitions

<Press Release>

First model of FIRST Simulator March 13, 2005

<TV News & Newspapers>

TV News NHK(Mito) March 13, 2005 NHK(Capital Area) March 17, 2005 News & Net Yomiuri, Asahi, Ibaraki, Tokyo, Jyoyo, Nikkan-Kogyo, Nikkei-Sangyo, Kyoto

<TV Interview>

NHK(Mito) May 17, 2005

<Exhibitions>

SC05 (Seattle) SC06 (Tampa) SC07 (Reno) coming soon

Press Release

Press Release

SC05

Radiation-SPH(RSPH) Scheme with FIRST simulator

TREE-GRAPE-SPH +Radiative transfer + Non-equilibrium Chemistry + Thermal processes

1. Hydrodynamics SPH (Umemura 1993; Steinmetz & Muller 1993)

2. Self-gravity Parallel Tree-GRAPE code (Orthogonal Recursive Bisection)

3. Frequency-dependent Radiative Transfer (Ray-tracing) (Kessel-Deynet & Burkert 2000, Nakamoto et al. 2001)

4. Non-equilibrium Chemistry & Thermal Processes (Susa & Kitayama 2000)

Radiation Transfer on SPH

Kessel-Deynet & Burkert (2000)

Optical depth calculations (Ray Tracing)

Parallelization of Radiative Transfer

Parallelization by Domain decomposition ORB (Orthogonal Recursive Bisection)

Paralellization for Multiple Sources

MWF(Node Wave Front) Parallelization

<u>Cosmological Radiative Transfer Codes Comparison Project II:</u> <u>Radiative Hydrodynamic Tests</u>

Figure 5. Test 5 (H II region expansion in an initially-uniform gas): Images of the temperature, cut through the simulation volume at coordinate z = 0 at time t = 100 Myr for (left to right and top to bottom) C^2 -Ray, HART, RSPH, Zeus-MP, RH1D, LICORICE, and FLASH.

Radiation SPH Simulation on Radiative Feedback on First Star Formation

(Susa & Umemura 2006, 2007)

UV radiation from a star generates an ionized region accompanied by a shock, which collides with a gas cloud. If the cloud density is higher than a threshold value, it can collapse to form a new star.

H₂ Shielded Collapse

$$n_{on} = 3 \pm 10^3 \text{ cm}^{-3}$$

Susa & Umemura 2006

$n_{on} = 3 \pm 10^2 \text{ cm}^{-3}$

• shock is raised by M-type IF

 shock blows the collapsing core

RS7

P³M-GRAPE Simulation on Formation of First Stars

(Suwa et al. 2007 \Rightarrow this afternoon)

WMAP 3 year Λ CDM cosmology z_{in} =15, 100kpc [comoving]³

Baryon mass: $6 \times 10^{6} M_{\odot}$ Dark matter mass: $3 \times 10^{7} M_{\odot}$

6 x 10⁷ particles for baryon + dark matter

Mass resolution: $0.3M_{\odot}$ in baryon $1.5M_{\odot}$ in DM

No change of mass resolution throughout the simulation

The Drigin of FIRST Generation Objects

First Metal Enrichment in the Universe

Mori & Umemura 2007

Total mass $10^8 M_{\odot}$, Baryon mass: $1.75 \times 10^7 M_{\odot}$, z=20 256³ mesh

Globular Cluster Formation in UV Background

(Hasegawa & Umemura, 2007 ⇒ next afternoon)

Radiative Transfer in Magneto-hydrodynamic Accretion Flows

(Kato et al. 2007 \Rightarrow next afternoon)

Emergent spectrum of the Galactic center

Monte-Carlo Radiative Transfer is solved in magnetohydrodynamic (MHD) accretion flows plunging into a supermassive black hole in our galactic center.

P³M-GRAPE Simulation on Early Structure Formation in the Universe

(Hirashita et al. 2007, in prep)

High-Redshift Galaxies

1.6 x 10⁷ dark matter particles

We simulate distributions and luminosities of high-z galaxies with cosmological N-body scheme on 16 nodes of FIRST.

These galaxies are expected to be found by next generation telescopes, e.g. ALMA.

Luminous infrared galaxies at z=6

SPH Simulation on Merger of Galaxy Clusters

(Akahori et al. $2007 \Rightarrow$ next afternoon)

Non-equilibrium states of intracluster plasma

Density

Non-equilibrium states of intracluster plasma are good probes for understanding merging clusters, in parallel with calculations for dozens of electron non-equilibrium states of oxygen, iron, and other heavy elements in the plasma.

6D Collisionless Boltzmann for Dark Matter

(Sato & Umemura, in prep.)

$$\frac{\partial f}{\partial t} + v \frac{\partial f}{\partial x} + \left(-2 \frac{\dot{a}}{a} v - \frac{1}{a^3} \sum_{j} \frac{Gm_{j} \left(x_{i} - x_{j} \right)}{\left| x_{i} - x_{j} \right|^{3}} \right) \frac{\partial f}{\partial v} = 0$$

6D collisionless Boltzmann equation is solved in phase space with CIP scheme.

- "FIRST" simulator has been build up to realize radiation hydrodynamic simulations in astrophysics.
- It possesses accelerator for gravity calculations, Blade-GRAPE, and the total peak speed is 36.1 Tflops.
- Intensive simulations have started with FIRST simulator on

Formation of First Stars
Formation of Globular Clusters
Formation of First Galaxies
BH Accretion Flows
Clusters & Large-scale Structure
Collisionless Boltzmann