

PACS-CS A massively parallel cluster for computational sciences

Taisuke Boku

Center for Computational Sciences / Graduate School of Systems and Information Engineering University of Tsukuba

PACS-CS Project Overview

Purpose

- Creating a new CCS computational facility with tens of TFLOPS and Performing various target applications with large scale parallelism
- Not just procuring a machine but developing unique one for CCS application requirements
- Period
 - Apr. 2005 Mar. 2008 (FY 2005-2007)
- Team
 - Collaboration with computer scientists and computational scientists in CCS
 - Collaboration with university and vendor: U. Tsukuba, Hitachi and Fujitsu

HPC resources required at CCS

- Target applications and computation characteristics
 - full QCD (small size of complex matrix calculation + nearest neighboring communication)
 - Nano material science (CG method)
 - Astrophysics (hybrid computing for particles & field)
 - Environment, Biology (parameter search)

Shift from MPP

- Previous machine: CP-PACS with 2048 CPU & 614 Gflops
- We need replacement of MPP with Commodity Technology
- Main target applications require the *bandwidth both on* memory and network

Previous main resource: CP-PACS

Operation stopped on Sep. '05

Center for Computational Sciences, Univ. of Tsukuba

Concept of PACS-CS

- Making an MPP-like system based on commodity technology
- Cluster is OK, but we keep the balance among
 CPU : memory : network performances
- To reduce the cost, considering our target applications

PACS-CS

Parallel Array Computer System for Computational Sciences

CCS, ExtReview 2007/10/30

Real Space Approach in Computational Science

Real Space modeling

6

- MPP code based on real-space descritization
 - ⇒ Large scale parallelism with NNM comm. + collective comm.
- Reducing Comp. Time (not reducing Comp. Amount)
 - Traditional methods: FFT, spectrum, ...
 ⇒Indirect computation, not enlarging model space
 - Real Space method :
 ⇒Simulating real model on real space
- We need re-program the traditional codes

General HPC clusters (as in yr. 2004)

- Intel-compatible CPU (Xeon, Opteron, Itanium2, ...)
- Dual CPU SMP
 - To reduce the space and the number of network interface keeping total system peak performance
 - Rack of memory bandwidth (memory wall problem) (but very fast for Linpack !)
 - Low sustained performance on network bound applications
- So much CPU frequency
 - For very high peak performance
- SAN (System Area Network)
 - MyrinetXP: dual connection for 500MB/s -> 10Gbps
 - Infiniband: x4 spec. for 1GB/s
 - Gb Ethernet is still OK for non-network bound applications (10GbE will come soon, but still expensive)

CPU / Memory performance balance

- Single CPU / node (not SMP)
- Memory wall problem ⇒ appropriate CPU speed (not too high frequency)
 - No chasing for the peak speed and frequency to CPU
 - We don't make "Linpack-aware machine"
- High density implementation
 - Same as traditional HPC clusters in SMP: 2CPU/1U
 - Keeping the same total memory size per chassis (1U)

Balance between node and network performance

- Our target application's parallelizing models
 - Nearest Neighboring Communication in n-dimension
 - Collective Communication (Broadcast/Reduction)
 - Not much random traffic
- Using commodity technology (= Ethernet)
 - Trunked links make wider bandwidth
 - Relatively large message size (non latency-sensitive)
 - Multi-dimensional implementation for much more bandwidth
 - No I/O-bus (PCI) bottleneck
 - Hyper-Crossbar Network with trunked GbE

3-dimensional Hyper-Crossbar (3D-HXB) Network

HXB based on trunked GbE

- Effective use of low price commodity technology
 - NIC chip
 - Switch (L2, 10~20 ports)
- Network bandwidth
 - A few links are trunked ⇒ Software solution is enough
 - Simultaneous transfer on multiple dimensions
 bandwidth = (link bandwidth) × (# of trunks) × (# of dim.)
 - Distributing I/O load from single I/O point (ex. PCI) to multiple ones
- Routing is required for transfer on multiple dimensions
 - 3-D configuration is enough for up to 4096 nodes (16 CPUs / dimension)
 - Software trunking + routing

CCS, ExtReview 2007/10/30

Logical connection among nodes (CPUs) (3-D HXB network) 2560 nodes

Special network driver for GbE-trunk-HXB

- PM-Ethernet/HXB enables
 - Direct inter-node communication on single dimension
 - Multiple GbE links are trunked to multiply bandwidth
 - Up to 3-D simultaneous sending/receiving
 250 MByte/sec (dual-link GbE) x 3 = 750 MByte/sec
 - Routing for a message requiring 1 or 2 hops of transfer on intermediate nodes
 - Fault tolerant operation for single link failure (future plan)
 - For more information \Rightarrow another paper on ICS'06

Center for Computational Sciences, Univ. of Tsukuba

CCS, ExtReview 2007/10/30

13

Mother board & Chasis

14

Specially designed motherboard

CCS, ExtReview 2007/10/30

Unit chassis (19inch x 1U)

CCS, ExtReview 2007/10/30

# of nodes	2560 (16 x 16 x 10)
peak performance	14.3 Tflops
node configuration	single CPU / node
CPU	Intel LV Xeon EM64T, 2.8GHz, 1MB L2 cache
memory	2GB/node (5.12 TB/system), DDR2 interleaved
network for parallel processing	3-dimensional Hyper-Crossbar Network
link bandwidth	one-sided: 250MB/s/dim.
	one-sided: 750MB/s (3-D simultaneous trans.)
local HDD	160 GB/node(RAID-1)
total system size	59 rack
power consumption	550 kW

CCS, ExtReview

2007/10/30

Real machine (just finished to construct!)

Switch Rack

Node Rack

S

CCS, ExtReview 2007/10/30

Real machine (cont'd)

CCS, ExtReview 2007/10/30

Full system of PACS-CS (2560 nodes)

CCS, ExtReview 2007/10/30

Whole system image and rack floor plan

4 categories of interconnection network

- Parallel Processing Network (for Data)
 - 3-D HXB network based on dual-GbE trunking
 - For high speed parallel processing on applications
- General Purpose Network
 - Generic tree network with link aggregation (LACP)
 - Generic UNIX network processing : NFS, NIS, DNS, rsh, ...
- Operation & Maintenance Network
 - Tree network
 - Remote operation (power on/off, reboot, individual/broadcast console access) to each/all node
- Surveillance Network
 - Watching a large number of (about 380) switches
 - All switches are managed and monitored by SNMP

CCS, ExtReview 2007/10/30

General Purpose Network

- -Basic fabric: 48 port GbE switch (with LACP)
- •For a single file-server (multiplied by the number of file servers)

64 switches for Stage-1 (40 CPU \times 64=2560 CPU)

Access to the file server

- "All nodes access the file server simultaneously" is impossible
- Each node is equipped with a local HDD (160GB) data have to be copied from file server before calculation
- Result file are transferred to the file server after computation
- Well-scheduled file transfer to keep a reasonable bandwidth
- Several special nodes can NFS mount to the file server
 - ⇒ Dynamic parameter changing

Operation & Maintenance Network

64 switches for Stage-1 (40 CPU × 64=2560 CPU)

CCS, ExtReview 2007/10/30

Software

- Linux + SCore
 - SCore: Cluster middleware to support partitioning and job management for thousands of nodes
 - PM/Ethernet-HXB driver
 - Checkpoint/Restart
- Scalable health-care monitor with GUI
- Batch/Queue (OpenPBS)
- Parallel programming in MPI
- Languages: Fortran90, C, C++
- Math Libraries

P2P performance on 1-dim communication

Ping-pong performance in MPICH (single dimension)

2007/10/30

Aggregated bisection bandwidth

2007/10/30

 Bisection bandwidth in MPICH (Simultaneous ping-pong on a single dimension) 8x8x8=512 node, 1MB message on 8x8x8 system)

Simultaneous communication

Simultaneous 3-D comm. (burst data transfer of long message)

Bandwidth/node [MB/s] (% to peak)	256 node	512 node
average	586.8 (78.2%)	582.0 (77.6%)
max.	619.3 (82.6%)	629.6 (84.0%)
min.	559.2 (74.6%)	434.0 (57.9%)

Almost 80% of performance is achieved on simultaneous 3-D comm.

Simultaneous 1-D. comm. with routing (diagonal comm., burst transfer)

Bandwidth/node [MB/s] (% to peak)	256 node	512 node
average	186.2 (74.5%)	184.1 (73.6%)
max.	123.5 (49.4%)	232.5 (93.0%)
min.	122.7 (49.1%)	230.9 (92.4%)

Almost 70% of performance is achieved with routing function

CCS, ExtReview

2007/10/30

Linpack performance

- 10.35 TFLOPS with 2560 nodes (#34 at 2006/Jun. TOP500 list, #2 as Made-in-Japan machine)
- Performance differs by 2-D array configuration on HPL

P×Q	N	Rmax (Tflops)	Efficiency (%)	3D-HXB routing
16×160	706560	10.33	72.05	No
32×80	722944	10.35	72.20	Yes

- 6.7 hours of running time
- No error on 10 times of running
- We performed node aging test, complete check of 5000 of HDD, and system level check before full installation

CCS, ExtReview 2007/10/30

Installation

- System design and implementation
 - Hardware + basic software : Hitachi
 - Network software: Fujitsu
- "Multi-Vendor" solution is available for such a commodity-based work
- System operation started from July 2006
- Mostly used with 256 or 512 nodes of groups (1.4 – 2.8 TFLOPS/partition)
- Performance tuning for 3-D simultaneous communication is still under going ⇒new PMvX API & library
- PM/Ethernet-HXB on SCore middleware was released under GPL

Partitions

Mixing and scheduling them according to user's request and applications

CCS, ExtReview 2007/10/30

32

Operation

- Currently under "Interdisciplinary Computational Science Promotion Program" with 13 of research groups
- Most of jobs are running with 256 or 512 node group, some with 128 node group
- Almost 100% of resource is always used (except regular & irregular maintenance)
- Very stable with a couple of troubles on CPU, motherboard under regular maintenance (every month)
- A couple of local HDD failure per month, but covered by RAID-1 system and no effect on application running

Applications running now

- Particle Physics: Lattice QCD
- Material Science:
 - RS-DFT (Real Space Density Function Theory)
 - QM/MM, MD (AMBER), CPMD
- Nuclear Physics & Material Science: RT-DFT (Real-Time DFT)
- Geoenvironment: NICAM & WRF (climate simulation)
- Biology: Tree-Puzzle

....

(details will be presented in each division/group report)

CCS, ExtReview 2007/10/30

Conclusions

- PACS-CS is an MPP based on commodity technology
- Balance among CPU : Memory : Network performances is the essential
- High cost-effectiveness network suitable for a certain class of applications : GbE trunked 3D-HXB
- Same density with traditional dual CPU SMP node
- 2560 CPU, 14.3 TFLOPS system is running since July
 2006

Center for Computational Sciences, Univ. of Tsukuba